scispace - formally typeset
Search or ask a question

Showing papers on "Doxorubicin published in 2014"



Journal ArticleDOI
TL;DR: This review highlights recent evidence for effects of anthracyclines on DNA torsion and chromatin dynamics that may underlie basic mechanisms of doxorubicin-mediated cell death and suggest new therapeutic strategies for cancer treatment.

537 citations


Journal ArticleDOI
TL;DR: Nudoxa; (NPLD) with its unique drug delivery system offers the benefit of pegylated liposomal doxorubicin without hand foot syndrome as the major side effect, and future studies will be directed towards estimating the costs of treatment with the novel liposomes formulations in order to assess their widespread use and robustness in treating patients with cancer.
Abstract: The burden of cancer is continuously increasing, and is rapidly becoming a global pandemic. The first liposomal encapsulated anticancer drug which received clinical approval against malignancies including solid tumours, transplantable leukemias and lymphomas was Doxorubicin HCl. This review is aimed at providing an overview of doxorubicin in cancer therapy. Pegylated liposomal doxorubicin has a polyethylene glycol (PEG) layer around doxorubicin-containing liposome as the result of a process known as pegylation. Non-pegylated liposomal doxorubicin (NPLD) was developed to overcome the drawbacks associated with previous formulations. Nudoxa; (NPLD) with its unique drug delivery system offers the benefit of pegylated liposomal doxorubicin without hand foot syndrome as the major side effect. Future studies will be directed towards estimating the costs of treatment with the novel liposomal doxorubicin formulations in order to assess their widespread use and robustness in treating patients with cancer.

402 citations


Journal ArticleDOI
TL;DR: The obtained data suggest that co-delivery of DOX and miR-34a could achieve synergistic effects on tumor suppression and nanosystem-based co-Delivery of tumor suppressive miRNAs and chemotherapeutic agents may be a promising combined therapeutic strategy for enhanced anti-tumor therapy.

395 citations


Journal ArticleDOI
TL;DR: In vitro cytotoxicity assays against A549 human lung adenocarcinoma cell line demonstrated that the DOX + PTX co-delivered nanoparticles (Co-NPs) exhibited synergistic effect in inducing cancer cell apoptosis, indicating this co- delivery system with different functional antitumor drugs provides the clinical potential in cancer therapy.

282 citations


Journal ArticleDOI
TL;DR: With the programmed choreography, Gelipo significantly improves the inhibition of the tumor growth in the MDA‐MB‐231 xenograft tumor animal model.
Abstract: A programmed drug-delivery system that can transport different anticancer therapeutics to their distinct targets holds vast promise for cancer treatment. Herein, a core–shell-based “nanodepot” consisting of a liposomal core and a crosslinked-gel shell (designated Gelipo) is developed for the sequential and site-specific delivery (SSSD) of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and doxorubicin (Dox). As a small-molecule drug intercalating the nuclear DNA, Dox is loaded in the aqueous core of the liposome, while TRAIL, acting on the death receptor (DR) on the plasma membrane, is encapsulated in the outer shell made of crosslinked hyaluronic acid (HA). The degradation of the HA shell by HAase that is concentrated in the tumor environment results in the rapid extracellular release of TRAIL and subsequent internalization of the liposomes. The parallel activity of TRAIL and Dox show synergistic anticancer efficacy. The half-maximal inhibitory concentration (IC50) of TRAIL and Dox co-loaded Gelipo (TRAIL/Dox-Gelipo) toward human breast cancer (MDA-MB-231) cells is 83 ng mL–1 (Dox concentration), which presents a 5.9-fold increase in the cytotoxicity compared to 569 ng mL–1 of Dox-loaded Gelipo (Dox-Gelipo). Moreover, with the programmed choreography, Gelipo significantly improves the inhibition of the tumor growth in the MDA-MB-231 xenograft tumor animal model.

263 citations


Journal ArticleDOI
08 Jan 2014-PLOS ONE
TL;DR: It is demonstrated that glutathione pegylated liposomal doxorubicin enhances the effective delivery of doxorbicin to brain tumors and could become a promising new therapeutic option for the treatment of brain malignancies.
Abstract: Brain cancer is a devastating disease affecting many people worldwide. Effective treatment with chemotherapeutics is limited due to the presence of the blood-brain barrier (BBB) that tightly regulates the diffusion of endogenous molecules but also xenobiotics. Glutathione pegylated liposomal doxorubicin (2B3-101) is being developed as a new treatment option for patients with brain cancer. It is based on already marketed pegylated liposomal doxorubicin (Doxil®/Caelyx®), with an additional glutathione coating that safely enhances drug delivery across the BBB. Uptake of 2B3-101 by human brain capillary endothelial cells in vitro was time-, concentration- and temperature-dependent, while pegylated liposomal doxorubicin mainly remained bound to the cells. In vivo, 2B3-101 and pegylated liposomal doxorubicin had a comparable plasma exposure in mice, yet brain retention 4 days after administration was higher for 2B3-101. 2B3-101 was overall well tolerated by athymic FVB mice with experimental human glioblastoma (luciferase transfected U87MG). In 2 independent experiments a strong inhibition of brain tumor growth was observed for 2B3-101 as measured by bioluminescence intensity. The effect of weekly administration of 5 mg/kg 2B3-101 was more pronounced compared to pegylated liposomal doxorubicin (p<0.05) and saline (p<0.01). Two out of 9 animals receiving 2B3-101 showed a complete tumor regression. Twice-weekly injections of 5 mg/kg 2B3-101 again had a significant effect in inhibiting brain tumor growth (p<0.001) compared to pegylated liposomal doxorubicin and saline, and a complete regression was observed in 1 animal treated with 2B3-101. In addition, twice-weekly dosing of 2B3-101 significantly increased the median survival time by 38.5% (p<0.001) and 16.1% (p<0.05) compared to saline and pegylated liposomal doxorubicin, respectively. Overall, these data demonstrate that glutathione pegylated liposomal doxorubicin enhances the effective delivery of doxorubicin to brain tumors and could become a promising new therapeutic option for the treatment of brain malignancies.

199 citations


Journal ArticleDOI
TL;DR: SQ-Dox nanoassembly-treated MiaPaCa-2 pancreatic tumor xenografts in mice decreased by 95% compared with the tumors in the saline-treated mice, which was significantly higher than the 29% reduction achieved by native doxorubicin.
Abstract: We identified that the chemical linkage of the anticancer drug doxorubicin onto squalene, a natural lipid precursor of the cholesterol’s biosynthesis, led to the formation of squalenoyl doxorubicin (SQ-Dox) nanoassemblies of 130-nm mean diameter, with an original “loop-train” structure. This unique nanomedicine demonstrates: (i) high drug payload, (ii) decreased toxicity of the coupled anticancer compound, (iii) improved therapeutic response, (iv) use of biocompatible transporter material, and (v) ease of preparation, all criteria that are not combined in the currently available nanodrugs. Cell culture viability tests and apoptosis assays showed that SQ-Dox nanoassemblies displayed comparable antiproliferative and cytotoxic effects than the native doxorubicin because of the high activity of apoptotic mediators, such as caspase-3 and poly(ADP-ribose) polymerase. In vivo experiments have shown that the SQ-Dox nanomedicine dramatically improved the anticancer efficacy, compared with free doxorubicin. Particularly, the M109 lung tumors that did not respond to doxorubicin treatment were found inhibited by 90% when treated with SQ-Dox nanoassemblies. SQ-Dox nanoassembly-treated MiaPaCa-2 pancreatic tumor xenografts in mice decreased by 95% compared with the tumors in the saline-treated mice, which was significantly higher than the 29% reduction achieved by native doxorubicin. Concerning toxicity, SQ-Dox nanoassemblies showed a fivefold higher maximum-tolerated dose than the free drug, and moreover, the cardiotoxicity study has evidenced that SQ-Dox nanoassemblies did not cause any myocardial lesions, such as those induced by the free doxorubicin treatment. Taken together, these findings demonstrate that SQ-Dox nanoassemblies make tumor cells more sensitive to doxorubicin and reduce the cardiac toxicity, thus providing a remarkable improvement in the drug’s therapeutic index.

184 citations


Journal ArticleDOI
TL;DR: How topoisomerase II poisons trigger chromosomal breaks that lead to leukemia and potential approaches for dissociating the actions of drugs from their leukemogenic potential are discussed.
Abstract: Type II topoisomerases are essential enzymes that modulate DNA under- and overwinding, knotting, and tangling. Beyond their critical physiological functions, these enzymes are the targets for some of the most widely prescribed anticancer drugs (topoisomerase II poisons) in clinical use. Topoisomerase II poisons kill cells by increasing levels of covalent enzyme-cleaved DNA complexes that are normal reaction intermediates. Drugs such as etoposide, doxorubicin, and mitoxantrone are frontline therapies for a variety of solid tumors and hematological malignancies. Unfortunately, their use also is associated with the development of specific leukemias. Regimens that include etoposide or doxorubicin are linked to the occurrence of acute myeloid leukemias that feature rearrangements at chromosomal band 11q23. Similar rearrangements are seen in infant leukemias and are associated with gestational diets that are high in naturally occurring topoisomerase II-active compounds. Finally, regimens that include mitoxantrone and epirubicin are linked to acute promyelocytic leukemias that feature t(15;17) rearrangements. The first part of this article will focus on type II topoisomerases and describe the mechanism of enzyme and drug action. The second part will discuss how topoisomerase II poisons trigger chromosomal breaks that lead to leukemia and potential approaches for dissociating the actions of drugs from their leukemogenic potential.

173 citations


Journal ArticleDOI
TL;DR: Thioridazine (THZ), which was reported to kill cancer stem cells, was used in a combination therapy with doxorubicin (DOX) to eradicate both cancer cells and DOX-resistant cancer stem Cells to mitigate the reoccurrence of the disease.

170 citations


Journal ArticleDOI
Fenghua Meng1, Yinan Zhong1, Ru Cheng1, Chao Deng1, Zhiyuan Zhong1 
TL;DR: A smart delivery approach has shown to elegantly resolve the in vivo stability versus intracellular drug release dilemma, as well as stealth versus tumor cell uptake dilemma, for tumor-targeting cancer chemotherapy.

Journal ArticleDOI
TL;DR: The data suggest that PEGylated dendrimers have potential as inhalable drug delivery systems to promote the prolonged exposure of lung-resident cancers to chemotherapeutic drugs and to improve anti-cancer activity.

Journal ArticleDOI
TL;DR: It was found that drug-resistant adriamycin-resistant human breast cancer cells possessed numerous transient receptor potential channel 5 (TrpC5) -containing extracellular vesicles (EVs) on the cell surface that may transfer chemoresistance property to nonchemoresistant recipient cells.
Abstract: A critical challenge for chemotherapy is the development of chemoresistance in breast cancer. However, the underlying mechanisms and validated predictors remain unclear. Extracellular vesicles (EVs) have gained attention as potential means for cancer cells to share intracellular contents. In adriamycin-resistant human breast cancer cells (MCF-7/ADM), we analyzed the role of transient receptor potential channel 5 (TrpC5) in EV formation and transfer as well as the diagnostic implications. Up-regulated TrpC5, accumulated in EVs, is responsible for EV formation and trapping of adriamycin (ADM) in EVs. EV-mediated intercellular transfer of TrpC5 allowed recipient cells to acquire TrpC5, consequently stimulating multidrug efflux transporter P-glycoprotein production through a Ca2+- and activated T-cells isoform c3-mediated mechanism and thus, conferring chemoresistance on nonresistant cells. TrpC5-containing circulating EVs were detected in nude mice bearing MCF-7/ADM tumor xenografts, and the level was lower after TrpC5–siRNA treatment. In breast cancer patients who underwent chemotherapy, TrpC5 expression in the tumor was significantly higher in patients with progressive or stable disease than in patients with a partial or complete response. TrpC5-containing circulating EVs were found in peripheral blood from patients who underwent chemotherapy but not patients without chemotherapy. Taken together, we found that TrpC5-containing circulating EVs may transfer chemoresistance property to nonchemoresistant recipient cells. It may be worthwhile to further explore the potential of using TrpC5-containing EVs as a diagnostic biomarker for chemoresistant breast cancer.

Journal ArticleDOI
TL;DR: It is demonstrated that doxorubicin-tethered gold nanoparticles via a poly(ethylene glycol) spacer and an acid-labile hydrazone bond mediate potent doxorbicin delivery to breast CSCs, which reduces their mammosphere formation capacity and their cancer initiation activity, eliciting marked enhancement in tumor growth inhibition in murine models.

Journal ArticleDOI
TL;DR: Progress made over the past two decades in understanding the molecular and genetic basis of anthracycline-induced cardiotoxicity is reviewed; detecting and monitoring myocardial dysfunction; using adjunct cardioprotectant therapies; and improvingCardioprotection with agents such as liposomal and pegylated doxorubicin are reviewed.
Abstract: Anthracyclines have been widely used in children and adults to treat hematologic malignancies, soft-tissue sarcomas, and solid tumors However, anthracyclines come with both short- and long-term cardiotoxic effects, ranging from occult changes in myocardial structure and function to severe cardiomyopathy and heart failure that may result in cardiac transplantation or death Here, we review the progress made over the past two decades in understanding the molecular and genetic basis of anthracycline-induced cardiotoxicity; detecting and monitoring myocardial dysfunction; using adjunct cardioprotectant therapies, such as dexrazoxane; and improving cardioprotection with agents such as liposomal and pegylated doxorubicin Despite this increased understanding, preventing drug-induced cardiotoxicity while maintaining oncologic efficacy to achieve the highest quality of life over a lifespan remain cornerstones of successful anthracycline chemotherapy during childhood

Journal ArticleDOI
TL;DR: PFS, overall survival, and tumor response compared favorably with historical outcomes achieved with other first-line chemotherapies for advanced STS.
Abstract: Purpose TH-302, a prodrug of the cytotoxic alkylating agent bromo-isophosphoramide mustard, is preferentially activated in hypoxic conditions. This phase II study investigated TH-302 in combination with doxorubicin, followed by single-agent TH-302 maintenance therapy in patients with first-line advanced soft tissue sarcoma (STS) to assess progression-free survival (PFS), response rate, overall survival, safety, and tolerability. Patients and Methods In this open-label phase II study, TH-302 300 mg/m2 was administered intravenously on days 1 and 8 with doxorubicin 75 mg/m2 on day 1 of each 21-day cycle. After six cycles, patients with stable and/or responding disease could receive maintenance monotherapy with TH-302. Results Ninety-one patients initiated TH-302 plus doxorubicin induction treatment. The PFS rate at 6 months (primary efficacy measure) was 58% (95% CI, 46% to 68%). Median PFS was 6.5 months (95% CI, 5.8 to 7.7 months); median overall survival was 21.5 months (95% CI, 16.0 to 26.2 months). Bes...

Journal ArticleDOI
TL;DR: A new robust approach to load two drugs with different hydrophilicities into a single cross-linked multilamellar liposomal vesicle (cMLV) to precisely control the drug ratio that reaches the tumor in vivo, enabling the ratio-dependent combination synergy seen in vitro to translate to in vivo antitumor activity.
Abstract: Combining chemotherapeutics is a promising method of improving cancer treatment; however, the clinical success of combination therapy is limited by the distinct pharmacokinetics of combined drugs, which leads to nonuniform distribution. In this study, we report a new robust approach to load two drugs with different hydrophilicities into a single cross-linked multilamellar liposomal vesicle (cMLV) to precisely control the drug ratio that reaches the tumor in vivo. The stability of cMLVs improves the loading efficiency and sustained release of doxorubicin (Dox) and paclitaxel (PTX), maximizing the combined therapeutic effect and minimizing the systemic toxicity. Furthermore, we show that the cMLV formulation maintains specific drug ratios in vivo for over 24 h, enabling the ratio-dependent combination synergy seen in vitro to translate to in vivo antitumor activity and giving us control over another parameter important to combination therapy. This combinatorial delivery system may provide a new strategy for synergistic delivery of multiple chemotherapeutics with a ratiometric control over encapsulated drugs to treat cancer and other diseases.

Journal ArticleDOI
TL;DR: Animal experiment with an orthotropic 4T1 mammary tumor model demonstrated that GNR@DOX nanoplatform significantly reduced the growth of primary tumors and suppressed their lung metastasis, suggesting a considerable potential of GNR @DOX Nanoplatform for treatment of metastatic breast cancer.

Journal ArticleDOI
Weicai Chen1, Yuanyuan Yuan1, Du Cheng1, Jifeng Chen1, Lu Wang1, Xintao Shuai1 
01 Jul 2014-Small
TL;DR: The expression of anti-apoptotic BCL-2 protein induced by DOX treatment is significantly down-regulated, which results in synergistically enhanced apoptosis of human ovarian cancer SKOV-3 cells and thus dramatically inhibited tumor growth.
Abstract: Drug resistance is the greatest challenge in clinical cancer chemotherapy. Co-delivery of chemotherapeutic drugs and siRNA to tumor cells is a vital means to silence drug resistant genes during the course of cancer chemotherapy for an improved chemotherapeutic effect. This study aims at effective co-delivery of siRNA and anticancer drugs to tumor cells. A ternary block copolymer PEG-PAsp(AED)-PDPA consisting of pH-sensitive poly(2-(diisopropyl amino)ethyl methacrylate) (PDPA), reduction-sensitive poly(N-(2,2'-dithiobis(ethylamine)) aspartamide) PAsp(AED), and poly(ethylene glycol) (PEG) is synthesized and assembled into a core-shell structural micelle which encapsulated doxorubicin (DOX) in its pH-sensitive core and the siRNA-targeting anti-apoptosis BCL-2 gene (BCL-2 siRNA) in a reduction-sensitive interlayer. At the optimized size and zeta potential, the nanocarriers loaded with DOX and BCL-2 siRNA may effectively accumulate in the tumor site via blood circulation. Moreover, the dual stimuli-responsive design of micellar carriers allows microenviroment-specific rapid release of both DOX and BCL-2 siRNA inside acidic lysosomes with enriched reducing agent, glutathione (GSH, up to 10 mM). Consequently, the expression of anti-apoptotic BCL-2 protein induced by DOX treatment is significantly down-regulated, which results in synergistically enhanced apoptosis of human ovarian cancer SKOV-3 cells and thus dramatically inhibited tumor growth.

Journal ArticleDOI
TL;DR: It is shown that CNP enhance the antitumor activity of doxorubicin in human melanoma cells, and synergistic effects on cytotoxicity, reactive oxygen species generation, and oxidative damage in tumor cells were observed after co-incubation.
Abstract: Nanotechnology is becoming an important field of biomedical and clinical research and the application of nanoparticles in disease may offer promising advances in treatment of many diseases, especially cancer. Malignant melanoma is one of the most aggressive forms of cancer and its incidence is rapidly increasing. Redox-active cerium oxide nanoparticles (CNP) are known to exhibit significant antitumor activity in cells derived from human skin tumors in vitro and in vivo, whereas CNP is nontoxic and beyond that even protective (antioxidative) in normal, healthy cells of the skin. As the application of conventional chemotherapeutics is associated with harmful side effects on healthy cells and tissues, the clinical use is restricted. In this study, we addressed the question of whether CNP supplement a classical chemotherapy, thereby enhancing its efficiency without additional damage to normal cells. The anthracycline doxorubicin, one of the most effective cancer drugs, was chosen as reference for a classical chemotherapeutic agent in this study. Herein, we show that CNP enhance the antitumor activity of doxorubicin in human melanoma cells. Synergistic effects on cytotoxicity, reactive oxygen species generation, and oxidative damage in tumor cells were observed after co-incubation. In contrast to doxorubicin, CNP do not cause DNA damage and even protect human dermal fibroblasts from doxorubicin-induced cytotoxicity. A combination of classical chemotherapeutics with nongenotoxic but antitumor active CNP may provide a new strategy against cancer by improving therapeutic outcome and benefit for patients.

Journal ArticleDOI
TL;DR: The strategy of localized, sustained co-delivery of PLK1shRNA and DOX by using the biodegradable, injectable hydrogel may have potential for efficient clinical treatment of osteosarcoma.

Journal ArticleDOI
TL;DR: A novel lipid nanoparticles loaded with doxorubicin (DOX) and curcumin (Cur) (a chemosensitizer) simultaneously are developed and the efficacy of chemotherapy in liver cancer is examined, suggesting the simultaneous delivery of DOX and Cur by DOX/Cur-NPs might be a promising treatment for liver cancer.
Abstract: Liver cancer is a leading cause of cancer deaths worldwide. The combination therapy of cytotoxic and chemosensitizing agents loaded in nanoparticles has been highlighted as an effective treatment for different cancers. However, such studies in liver cancer remain very limited. In our study, we aim to develop a novel lipid nanoparticles loaded with doxorubicin (DOX) (an effective drug for liver cancer) and curcumin (Cur) (a chemosensitizer) simultaneously, and we examined the efficacy of chemotherapy in liver cancer. DOX and Cur codelivery lipid nanoparticles (DOX/Cur-NPs) were successfully prepared using a high-pressure microfluidics technique, showing a mean particle size of around 90 nm, a polydispersity index 90% for both DOX and Cur. The blank lipid nanoparticles were nontoxic, as determined by a cell cytotoxicity study in human normal liver cells L02 and liver cancer cells HepG2. In vitro DOX release studies revealed a sustained-release pattern until 48 hours in DOX/Cur-NPs. We found enhanced cytotoxicity and decreased inhibitory concentration (IC)50 in HepG2 cells and reduced cytotoxicity in L02 cells treated with DOX/Cur-NPs, suggesting the synergistic effects of DOX/Cur-NPs compared with free DOX and DOX nanoparticles (NPs). The optimal weight ratio of DOX and Cur was 1:1. Annexin-V-fluorescein isothiocyanate/propidium iodide double staining showed enhanced apoptosis in HepG2 cells treated with DOX/Cur-NPs compared with free DOX and DOX-NPs. An in vivo experiment showed the synergistic effect of DOX/Cur-NPs compared with DOX-NPs on liver tumor growth inhibition. Taken together, the simultaneous delivery of DOX and Cur by DOX/Cur-NPs might be a promising treatment for liver cancer.

Journal ArticleDOI
TL;DR: The ability of C60-PEI-DOX nanoparticles to combine local specific chemotherapy with external photodynamic therapy significantly improved the therapeutic efficacy of the cancer treatment, the combined treatment demonstrating a synergistic effect.

Journal ArticleDOI
TL;DR: It is shown that curcumin & doxorubicin co-encapsulated within the liposomes of the presently described pegylated RGDK-lipopeptide exhibit synergism in inhibiting proliferation, invasion and migration of both tumor and endothelial cells presumably by inhibitingiferation and metastasis related genes both at mRNA & protein levels.

Journal ArticleDOI
TL;DR: Hydxytyrosol improved the cardiac disturbances enhanced by doxorubicin by significantly reducing the percentage of altered mitochondria and oxidative damage, suggesting that hydroxytyrorosol improve the mitochondrial electron transport chain.

Journal ArticleDOI
TL;DR: In vivo anticancer efficacy of the Dox-encapsulating PSMA-aptamosomes on tumor size regression in LNCaP xenograft mice and the encapsulation of toxic chemicals with aptamer-conjugated liposomes are suggested to enable the use of these bioconjugates in clinical practice with fewer side effects.

Journal ArticleDOI
TL;DR: The data indicate that DNA-PK might be an effective target for chemo- and radio-potentiation in breast cancer and suggest that further development of DNA- PK inhibitors for clinical use is warranted.
Abstract: DNA-dependent protein kinase (DNA-PK) plays a key role in the repair of DNA double-strand breaks (DSBs) that are probably the most deleterious form of DNA damage. Inhibition of DNA-PK has been considered as an attractive approach to decrease resistance to therapeutically induced DNA DSBs. Ionizing radiation (IR) and doxorubicin, which induce DSBs, are used in the treatment of breast cancer. We determined the cellular concentration of DNA-PK and other DSB-activated kinases: ATM and ATR and the effect of DNA-PK inhibition by NU7441 on DNA repair, cell cycle, and survival after IR or doxorubicin treatment in three human breast cancer cell lines (MCF-7, MDA-MB-231, and T47D) representing different breast cancer subtypes. T47D cells had the highest expression of DNA-PKcs, ATM, and ATR and the most rapid rate of DNA DSB repair. IR caused a 10- to 16-fold increase in DNA-PK activity and two to threefold induction of ATM in all 3 cell lines. NU7441 inhibited IR-induced DNA-PK activity in all cell lines with IC50s in the range 0.17-0.25 μM. NU7441 retarded the repair of DSB and significantly increased the sensitivity of all cell lines to IR (4- to 12-fold) and doxorubicin (3- to 13-fold). The greatest sensitization by NU7441 was observed in MDA-MB-231 cells. NU7441 affected the cell cycle distribution in all studied cell lines; increasing accumulation of cells in G2/M phase after DNA damage. Our data indicate that DNA-PK might be an effective target for chemo- and radio-potentiation in breast cancer and suggest that further development of DNA-PK inhibitors for clinical use is warranted.

Journal ArticleDOI
TL;DR: The combination of DOX and RNA interference showed synergistic effect on overcoming MDR, and PDNs could be a promising co-delivery vector for effective therapy of drug resistant breast cancer.

Journal ArticleDOI
TL;DR: Results suggest that treatment with a combination of RSV and Dox would be a helpful strategy for increasing the efficacy of Dox by promoting an intracellular accumulation of D Cox and decreasing multi-drug resistance in human breast cancer cells.

Journal ArticleDOI
TL;DR: Novel evidence is provided that doxorubicin and its metabolite, doxorbicinol, bind to the cardiac ryanodine receptor (RyR2) and to the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA2A) and deleteriously alter their activity and that the metabolite acts with greater efficacy than the parent compound.
Abstract: The use of anthracycline chemotherapeutic drugs is restricted owing to potentially fatal cardiotoxic side effects. It has been hypothesized that anthracycline metabolites have a primary role in this cardiac dysfunction; however, information on the molecular interactions of these compounds in the heart is scarce. Here we provide novel evidence that doxorubicin and its metabolite, doxorubicinol, bind to the cardiac ryanodine receptor (RyR2) and to the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA2A) and deleteriously alter their activity. Both drugs (0.01 μM–2.5 μM) activated single RyR2 channels, and this was reversed by drug washout. Both drugs caused a secondary inhibition of RyR2 activity that was not reversed by drug washout. Preincubation with the reducing agent dithiothreitol (DTT, 1 mM) prevented drug-induced inhibition of channel activity. Doxorubicin and doxorubicinol reduced the abundance of thiol groups on RyR2, further indicating that oxidation reactions may be involved in the actions of the compounds. Ca2+ uptake into sarcoplasmic reticulum vesicles by SERCA2A was inhibited by doxorubicinol, but not doxorubicin. Unexpectedly, in the presence of DTT, doxorubicinol enhanced the rate of Ca2+ uptake by SERCA2A. Together the evidence provided here shows that doxorubicin and doxorubicinol interact with RyR2 and SERCA2A in similar ways, but that the metabolite acts with greater efficacy than the parent compound. Both compounds modify RyR2 and SERCA2A activity by binding to the proteins and also act via thiol oxidation to disrupt SR Ca2+ handling. These actions would have severe consequences on cardiomyocyte function and contribute to clinical symptoms of acute anthracycline cardiotoxicity.