scispace - formally typeset
Search or ask a question

Showing papers on "Doxorubicin published in 2017"


Journal ArticleDOI
TL;DR: An intelligent biodegradable hollow manganese dioxide (H-MnO2) nano-platform is developed for not only tumor microenvironment (TME)-specific imaging and on-demand drug release, but also modulation of hypoxic TME to enhance cancer therapy, resulting in comprehensive effects favoring anti-tumor immune responses.
Abstract: Herein, an intelligent biodegradable hollow manganese dioxide (H-MnO2) nano-platform is developed for not only tumor microenvironment (TME)-specific imaging and on-demand drug release, but also modulation of hypoxic TME to enhance cancer therapy, resulting in comprehensive effects favoring anti-tumor immune responses. With hollow structures, H-MnO2 nanoshells post modification with polyethylene glycol (PEG) could be co-loaded with a photodynamic agent chlorine e6 (Ce6), and a chemotherapy drug doxorubicin (DOX). The obtained H-MnO2-PEG/C&D would be dissociated under reduced pH within TME to release loaded therapeutic molecules, and in the meantime induce decomposition of tumor endogenous H2O2 to relieve tumor hypoxia. As a result, a remarkable in vivo synergistic therapeutic effect is achieved through the combined chemo-photodynamic therapy, which simultaneously triggers a series of anti-tumor immune responses. Its further combination with checkpoint-blockade therapy would lead to inhibition of tumors at distant sites, promising for tumor metastasis treatment. MnO2 nanostructures are promising TME-responsive theranostic agents in cancer. Here, the authors develop a nano-platform based on hollow H-MnO2 nanoshells able to modulate the tissue microenvironment, release a drug and inhibit tumor growth alone or in combination with check-point blockade therapy.

1,007 citations


Journal ArticleDOI
TL;DR: Results indicate that TMEM score increases and MENA isoform expression pattern changes with chemotherapy and can be used in predicting prometastatic changes in response to chemotherapy.
Abstract: Breast cancer cells disseminate through TIE2/MENACalc/MENAINV-dependent cancer cell intravasation sites, called tumor microenvironment of metastasis (TMEM), which are clinically validated as prognostic markers of metastasis in breast cancer patients. Using fixed tissue and intravital imaging of a PyMT murine model and patient-derived xenografts, we show that chemotherapy increases the density and activity of TMEM sites and Mena expression and promotes distant metastasis. Moreover, in the residual breast cancers of patients treated with neoadjuvant paclitaxel after doxorubicin plus cyclophosphamide, TMEM score and its mechanistically connected MENAINV isoform expression pattern were both increased, suggesting that chemotherapy, despite decreasing tumor size, increases the risk of metastatic dissemination. Chemotherapy-induced TMEM activity and cancer cell dissemination were reversed by either administration of the TIE2 inhibitor rebastinib or knockdown of the MENA gene. Our results indicate that TMEM score increases and MENA isoform expression pattern changes with chemotherapy and can be used in predicting prometastatic changes in response to chemotherapy. Furthermore, inhibitors of TMEM function may improve clinical benefits of chemotherapy in the neoadjuvant setting or in metastatic disease.

357 citations


Journal ArticleDOI
TL;DR: Investigation of doxorubicin-induced cytotoxicity in human induced pluripotent stem cells-derived cardiomyocytes shows that the induction of death receptors in carduomyocytes is likely a critical mechanism by which doxorbicin causes cardiotoxicity.
Abstract: Doxorubicin is a highly effective anticancer agent but causes cardiotoxicity in many patients. The mechanisms of doxorubicin-induced cardiotoxicity remain incompletely understood. Here we investigated doxorubicin-induced cytotoxicity in human induced pluripotent stem cells-derived cardiomyocytes (iPS-CMs). We found that doxorubicin and related anthracycline agents (e.g., daunorubicin, idarubicin, and epirubicin) significantly upregulated the expression of death receptors (DRs) (TNFR1, Fas, DR4 and DR5) in iPS-derived cardiomyocytes at both protein and mRNA levels. The resulting iPS-CMs cells underwent spontaneous apoptosis which was further enhanced by physiologically relevant death ligands including TNF-related apoptosis inducing ligand (TRAIL). Furthermore, TRAIL potentiated doxorubicin-induced decrease in beating rate and amplitude of iPS-derived cardiomyocytes. These data demonstrate that the induction of death receptors in cardiomyocytes is likely a critical mechanism by which doxorubicin causes cardiotoxicity.

235 citations


Journal ArticleDOI
TL;DR: This work confirmed the cardiac tolerability profile of LD and PLD versus DOX, while hematological and skin toxicities were more common, and shows that the full clinical potentiality of DOX-NPs remains to be addressed to move the field forward.

193 citations


Journal ArticleDOI
TL;DR: The results show that DHCNPs not only achieve higher tumor specificity and lower toxicity by homologous targeting but also significantly reduce the exocytosis of DOX via suppressing the expressions of hypoxia‐inducible factor‐1α, multidrug resistance gene 1, and P‐glycoprotein, thus resulting in safe and high‐efficient chemotherapy.
Abstract: The inadequate oxygen supply in solid tumor causes hypoxia, which leads to drug resistance and poor chemotherapy outcomes. To solve this problem, a cancer cell membrane camouflaged nanocarrier is developed with a polymeric core encapsulating hemoglobin (Hb) and doxorubicin (DOX) for efficient chemotherapy. The designed nanoparticles (DHCNPs) retain the cancer cell adhesion molecules on the surface of nanoparticles for homologous targeting and possess the oxygen-carrying capacity of Hb for O2-interfered chemotherapy. The results show that DHCNPs not only achieve higher tumor specificity and lower toxicity by homologous targeting but also significantly reduce the exocytosis of DOX via suppressing the expressions of hypoxia-inducible factor-1α, multidrug resistance gene 1, and P-glycoprotein, thus resulting in safe and high-efficient chemotherapy. This work presents a new paradigm for targeted oxygen interference therapy by conquering hypoxia-involved therapeutic resistance and achieves effective treatment of solid tumors.

188 citations


Journal ArticleDOI
TL;DR: It is shown that overexpression of Qki5 strongly attenuates the toxic effect of doxorubicin via regulating a set of circular RNAs and is, thus, an interesting target molecule to combat doxorbicin-induced cardiotoxicity.
Abstract: Rationale: RBPs (RNA-binding proteins) have been described to be expressed and regulated in various organs including the heart. Little is known about the role of RBPs in heart failure induced by the chemotherapy drug doxorubicin and their interaction with circular RNAs. Objective: We aimed to identify key RBPs involved in doxorubicin-mediated heart failure and to elucidate their function. Methods and Results: Global transcriptome profiling from murine myocardium exposed to doxorubicin identified 5 differentially expressed RBPs. Expression of the RBP QKI (Quaking) in response to doxorubicin was strongly downregulated in rodent cardiomyocytes and human induced pluripotent stem cell–derived cardiomyocytes in vitro and in vivo in mice. Knockdown of Qki in primary cardiomyocytes increased apoptosis and atrophy after treatment with doxorubicin, whereas lentiviral mediated overexpression of Qki5 inhibited the doxorubicin-induced apoptosis in cardiomyocytes. In vivo, AAV9 (adeno-associated virus serotype 9)–mediated cardiac overexpression of Qki5 prevented cardiac apoptosis and cardiac atrophy induced by doxorubicin and improved cardiac function. Mechanistically, by lentiviral-based overexpression and CRISPR/Cas9-mediated silencing of Qki5 , we identified regulated expression of specific circular RNAs derived from Ttn (Titin), Fhod3 (Formin homology 2 domain containing 3), and Strn3 (Striatin, calmodulin-binding protein 3). Moreover, inhibition of Ttn -derived circular RNA increased the susceptibility of cardiomyocytes to doxorubicin. Conclusions: We here show that overexpression of Qki5 strongly attenuates the toxic effect of doxorubicin via regulating a set of circular RNAs. Qki5 is, thus, an interesting target molecule to combat doxorubicin-induced cardiotoxicity.

156 citations


Journal ArticleDOI
TL;DR: The prognosis for patients with TNBC with residual disease after chemotherapy is poor, and it is found that chemotherapy agents induce adaptive reprogramming of de novo pyrimidine synthesis and this response can be exploited pharmacologically, using clinically approved inhibitors of deno p Skyrimidine synthesis, to sensitize TNBC cells to chemotherapy.
Abstract: Chemotherapy resistance is a major barrier to the treatment of triple-negative breast cancer (TNBC), and strategies to circumvent resistance are required. Using in vitro and in vivo metabolic profiling of TNBC cells, we show that an increase in the abundance of pyrimidine nucleotides occurs in response to chemotherapy exposure. Mechanistically, elevation of pyrimidine nucleotides induced by chemotherapy is dependent on increased activity of the de novo pyrimidine synthesis pathway. Pharmacologic inhibition of de novo pyrimidine synthesis sensitizes TNBC cells to genotoxic chemotherapy agents by exacerbating DNA damage. Moreover, combined treatment with doxorubicin and leflunomide, a clinically approved inhibitor of the de novo pyrimidine synthesis pathway, induces regression of TNBC xenografts. Thus, the increase in pyrimidine nucleotide levels observed following chemotherapy exposure represents a metabolic vulnerability that can be exploited to enhance the efficacy of chemotherapy for the treatment of TNBC.Significance: The prognosis for patients with TNBC with residual disease after chemotherapy is poor. We find that chemotherapy agents induce adaptive reprogramming of de novo pyrimidine synthesis and show that this response can be exploited pharmacologically, using clinically approved inhibitors of de novo pyrimidine synthesis, to sensitize TNBC cells to chemotherapy. Cancer Discov; 7(4); 391-9. ©2017 AACR.See related article by Mathur et al., p. 380This article is highlighted in the In This Issue feature, p. 339.

139 citations


Journal ArticleDOI
TL;DR: The need for mechanism-guided targeting of anti-apoptotic BCL-2 proteins to effectively activate the mitochondrial cell death programme to kill cancer cells is highlighted.
Abstract: BCL-2 family proteins are central regulators of mitochondrial apoptosis and validated anti-cancer targets. Using small cell lung cancer (SCLC) as a model, we demonstrated the presence of differential addiction of cancer cells to anti-apoptotic BCL-2, BCL-XL or MCL-1, which correlated with the respective protein expression ratio. ABT-263 (navitoclax), a BCL-2/BCL-XL inhibitor, prevented BCL-XL from sequestering activator BH3-only molecules (BH3s) and BAX but not BAK. Consequently, ABT-263 failed to kill BCL-XL-addicted cells with low activator BH3s and BCL-XL overabundance conferred resistance to ABT-263. High-throughput screening identified anthracyclines including doxorubicin and CDK9 inhibitors including dinaciclib that synergized with ABT-263 through downregulation of MCL-1. As doxorubicin and dinaciclib also reduced BCL-XL, the combinations of BCL-2 inhibitor ABT-199 (venetoclax) with doxorubicin or dinaciclib provided effective therapeutic strategies for SCLC. Altogether, our study highlights the need for mechanism-guided targeting of anti-apoptotic BCL-2 proteins to effectively activate the mitochondrial cell death programme to kill cancer cells.

126 citations


Journal ArticleDOI
TL;DR: The findings support the existence of an miR-155/TP53 feedback loop, which is involved in resistance to chemotherapy and which can be specifically targeted to overcome drug resistance, an important cause of cancer-related death.
Abstract: Purpose: The oncogenic miR-155 is upregulated in many human cancers, and its expression is increased in more aggressive and therapy-resistant tumors, but the molecular mechanisms underlying miR-155-induced therapy resistance are not fully understood. The main objectives of this study were to determine the role of miR-155 in resistance to chemotherapy and to evaluate anti-miR-155 treatment to chemosensitize tumors.Experimental Design: We performed in vitro studies on cell lines to investigate the role of miR-155 in therapy resistance. To assess the effects of miR-155 inhibition on chemoresistance, we used an in vivo orthotopic lung cancer model of athymic nude mice, which we treated with anti-miR-155 alone or in combination with chemotherapy. To analyze the association of miR-155 expression and the combination of miR-155 and TP53 expression with cancer survival, we studied 956 patients with lung cancer, chronic lymphocytic leukemia, and acute lymphoblastic leukemia.Results: We demonstrate that miR-155 induces resistance to multiple chemotherapeutic agents in vitro, and that downregulation of miR-155 successfully resensitizes tumors to chemotherapy in vivo We show that anti-miR-155-DOPC can be considered non-toxic in vivo We further demonstrate that miR-155 and TP53 are linked in a negative feedback mechanism and that a combination of high expression of miR-155 and low expression of TP53 is significantly associated with shorter survival in lung cancer.Conclusions: Our findings support the existence of an miR-155/TP53 feedback loop, which is involved in resistance to chemotherapy and which can be specifically targeted to overcome drug resistance, an important cause of cancer-related death. Clin Cancer Res; 23(11); 2891-904. ©2016 AACR.

125 citations


Journal ArticleDOI
TL;DR: It is confirmed that CD-DOX complexes increased cancer therapy efficiency through the localization of a much higher quantity of drugs in the nuclei of tumor cells and induced a higher rate of apoptosis in ACC-2 cells, compared to DOX alone.

124 citations


Journal ArticleDOI
TL;DR: The stimuli-responsive polymeric nanogels (<100 nm in size) based on poly(acrylic acid) were designed as codelivery system for doxorubicin and cisplatin to overcome drug resistance to achieve synergistic effect and minimize drug dose for cancer treatment in clinic application.
Abstract: Combination chemotherapy has been proposed to achieve synergistic effect and minimize drug dose for cancer treatment in clinic application. In this article, the stimuli-responsive polymeric nanogels (<100 nm in size) based on poly(acrylic acid) were designed as codelivery system for doxorubicin and cisplatin to overcome drug resistance. By chelation, electrostatic interaction, and π–π stacking interactions, the nanogels could encapsulate doxorubicin and cisplatin with designed ratio and high capacity. Compared with free drugs, the nanogels could deliver more drugs into MCF-7/ADR cells. Significant accumulation in tumor tissues was observed in the biodistribution experiments. The in vitro antitumor studies demonstrated the superior cell-killing activity of the nanogel drug delivery system with a combination index of 0.84, which indicated the great synergistic effect. All the antitumor experimental data revealed that the combination therapy was effective for the multidrug-resistant MCF-7/ADR tumor with redu...

Journal ArticleDOI
TL;DR: In this article, the authors used DOX-platelet loaded with high drug loading and encapsulation efficiency for the treatment of lymphoma and found that DOX did not significantly induce morphological and functional changes in platelets.
Abstract: Chemotherapy is majorly used for the treatment of many cancers, including lymphoma. However, cytotoxic drugs, utilized in chemotherapy, can induce various side effects on normal tissues because of their non-specific distribution in the body. Natural platelets are used as drug carriers because of their biocompatibility and specific targeting to vascular disorders, such as cancer, inflammation, and thrombosis. In this work, doxorubicin (DOX) was loaded in natural platelets for treatment of lymphoma. Results showed that DOX was loaded into platelets with high drug loading and encapsulation efficiency. DOX did not significantly induce morphological and functional changes in platelets. DOX-platelet facilitated intracellular drug accumulation through "tumor cell-induced platelet aggregation" and released DOX into the medium in a pH-controlled manner. This phenomenon reduced the adverse effects and enhanced the therapeutic efficacy. The growth inhibition of lymphoma Raji cells was enhanced, and the cardiotoxicity of DOX was reduced when DOX was loaded in platelets. DOX-platelet improved the anti-tumor activity of DOX by regulating the expression of apoptosis-related genes. Thus, platelets can serve as potential drug carriers to deliver DOX for clinical treatment of lymphoma.

Journal ArticleDOI
TL;DR: The results suggest that HKL-mediated activation of SIRT3 protects the heart from doxorubicin-induced cardiotoxicity and represents a potentially novel adjunct for chemotherapy treatments.
Abstract: // Vinodkumar B. Pillai 1 , Abhinav Kanwal 1 , Yong Hu Fang 2 , Willard W. Sharp 2 , Sadhana Samant 1 , Jack Arbiser 3 and Mahesh P. Gupta 1 1 Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA 2 Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA 3 Department of Dermatology, Atlanta Veterans Administration Health Center, Emory University School of Medicine, Atlanta, GA, USA Correspondence to: Mahesh P. Gupta, email: // Keywords : doxorubicin, cardiac toxicity, SIRT3, Cardiac hypertrophy, cancer therapy, Pathology Section Received : September 14, 2016 Accepted : February 27, 2017 Published : March 11, 2017 Abstract Doxorubicin is the chemotherapeutic drug of choice for a wide variety of cancers, and cardiotoxicity is one of the major side effects of doxorubicin treatment. One of the main cellular targets of doxorubicin in the heart is mitochondria. Mitochondrial sirtuin, SIRT3 has been shown to protect against doxorubicin-induced cardiotoxicity. We have recently identified honokiol (HKL) as an activator of SIRT3, which protects the heart from developing pressure overload hypertrophy. Here, we show that HKL-mediated activation of SIRT3 also protects the heart from doxorubicin-induced cardiac damage without compromising the tumor killing potential of doxorubicin. Doxorubicin-induced cardiotoxicity is associated with increased ROS production and consequent fragmentation of mitochondria and cell death. HKL-mediated activation of SIRT3 prevented Doxorubicin induced ROS production, mitochondrial damage and cell death in rat neonatal cardiomyocytes. HKL also promoted mitochondrial fusion. We also show that treatment with HKL blocked doxorubicin-induced cardiac toxicity in mice. This was associated with reduced mitochondrial DNA damage and improved mitochondrial function. Furthermore, treatments of mice, bearing prostrate tumor-xenografts, with HKL and doxorubicin showed inhibition of tumor growth with significantly reduced cardiac toxicity. Our results suggest that HKL-mediated activation of SIRT3 protects the heart from doxorubicin-induced cardiotoxicity and represents a potentially novel adjunct for chemotherapy treatments.

Journal ArticleDOI
Di-Wei Zheng1, Bin Li1, Chu-Xin Li1, Lu Xu1, Jin-Xuan Fan1, Qi Lei1, Xian-Zheng Zhang1 
TL;DR: Interestingly, this study finds that HisAgCCN can enhance mitochondria biogenesis and aggravate oxidative stress in cancer cells, whereas protect normal cells from chemotherapy‐induced apoptosis as well.
Abstract: Continuous exposure to carbon monoxide (CO) can sensitize cancer cells to chemotherapy while protect normal cells from apoptosis. The Janus face of CO thus provides an ideal strategy for cancer therapy. Here, a photocatalytic nanomaterial (HisAgCCN) is introduced to transform endogenous CO2 to CO for improving cancer therapy in vivo. The CO production rate of HisAgCCN reaches to 65 µmol h-1 gmat-1 , which can significantly increase the cytotoxicity of anticancer drug (doxorubicin, DOX) by 70%. Interestingly, this study finds that HisAgCCN can enhance mitochondria biogenesis and aggravate oxidative stress in cancer cells, whereas protect normal cells from chemotherapy-induced apoptosis as well. Proteomics and metabolomics studies reveal that HisAgCCN can enhance mitochondria biogenesis and aggravate oxidative stress in cancer cells specifically. In vivo studies indicate that HisAgCCN/DOX combination therapy presents a synergetic tumor inhibition, which might provide a new direction for clinical cancer therapy.

Journal ArticleDOI
TL;DR: A robust polypeptide-based intracellular nanovehicle for synergistic delivery of DOX/QUR in cancer chemotherapy and QUR could significantly enhance the cytotoxic potential ofDOX, induce marked cell apoptosis, change cell cycle patterns, and inhibit the migratory capacity of sensitive and resistant cancer cells.

Journal ArticleDOI
TL;DR: Assessment methods suggest that nimustine, actinomycin D, doxorubicin, mitomycin C, mitoxantrone, carmofur, gemcitabine, mercaptopurine, camptothecin, paclitaxel, vinblastine, and vinorelbine are able to induce oxidative stress.
Abstract: Reactive oxygen species (ROS) are generated in the cell through multiple mechanisms. Intracellular ROS are rapidly detoxified by various enzymatic and non-enzymatic mechanisms; however, disruption of the oxidant-antioxidant balance causes oxidative stress and elicits cell damage. The oxidative stress induced by chemotherapy is known to cause side effects in patients with cancer. However, few studies have examined whether anticancer drugs induce oxidative stress in cancer cells. Furthermore, the precise mechanism by which anticancer drugs induce the generation of ROS remains unclear. In the present study, to investigate whether anticancer drugs induce oxidative stress, DLD-1 human colorectal cancer cells were treated with 20 different anticancer drugs and then stained with CellROX® ROS detection reagent. Furthermore, an oxygen radical absorbance capacity assay in the presence of copper was performed to estimate the oxidative activities of the anticancer drugs in the absence of cells. The data of the present study using assay methods in the presence and absence of cells suggest that nimustine, actinomycin D, doxorubicin, mitomycin C, mitoxantrone, carmofur, gemcitabine, mercaptopurine, camptothecin, paclitaxel, vinblastine, and vinorelbine are able to induce oxidative stress.

Journal ArticleDOI
TL;DR: By combining the photothermal therapy (PTT) and chemotherapy, the tumor growth inhibition mediated by PBMn-DOX@RBC is further enhanced and fulfills the demands to relieve tumor hypoxia and enhance cancer chemotherapy/PTT.
Abstract: Because of the nontargeting release of anticancer drugs, conventional chemotherapy results in serious side effects and poor therapeutic outcomes. In addition, hypoxia situation in the tumor microenvironment also promotes the growth and metastasis of tumors. Multifunctional nanocarriers with stimuli-activation and hypoxia-relieving properties can help overcome some of these limitations. In this study, we have constructed a nanocarrier which is named PBMn-DOX@RBC. A Prussian blue/manganese dioxide (PBMn) nanoparticle is used as an oxygen precursor or catalyzer for H2O2 activation, and a red blood cell (RBC) membrane is used to increase the loading capacity of doxorubicin (DOX) and prolong the circulation time in vivo. H2O2 is overproduced in tumor tissues and tumor cells. It can be used as a stimulus to activate drug release. In the presence of H2O2, the hypoxia inside the tumors is relieved by the administration of PBMn-DOX@RBC. The generated oxygen disrupts the RBC coated on the surface of PBMn, which accelerates the release of DOX. RBCs also prolong the circulation time of the nanometer system in vivo. By combining the photothermal therapy (PTT) and chemotherapy, the tumor growth inhibition mediated by PBMn-DOX@RBC is further enhanced. PBMn-DOX@RBC fulfills the demands to relieve tumor hypoxia and enhance cancer chemotherapy/PTT.

Journal ArticleDOI
TL;DR: It is reported that cRGD-functionalized, rapidly glutathione-responsive, and reversibly core-cross linked biodegradable micellar doxorubicin based on PEG-PCL block copolymer mediates potent and targeted glioma chemotherapy, affording significantly better treatment efficacy and lower systemic toxicity than the non-crosslinked micellars doxorbicin and clinically used pegylated liposomal dox orubicins.

Journal ArticleDOI
TL;DR: Results showed that upregulated lncARSR promotes doxorubicin resistance in HCC via modulating PTEN‐PI3K/Akt pathway, and implied that lnc ARSR may serve as a promising prognostic biomarker and therapeutic target for HCC chemo‐resistance.
Abstract: Hepatocellular carcinoma (HCC) is generally resistant to chemotherapy due to intrinsic or acquired drug resistances. Many molecules and signaling pathways are involved in chemo-resistance of HCC cells. However, the contribution of long noncoding RNA (lncRNA) to chemo-resistance of HCC cells is still largely unknown. In this study, we revealed the critical roles of long noncoding RNA lncARSR in chemo-resistance of HCC cells. lncARSR is upregulated in HCC, associated with large tumor size and advanced BCLC stage, and indicts poor prognosis. Functional assays showed that overexpression of lncARSR enhances doxorubicin resistance of HCC cells in vitro and in vivo. And while knockdown of lncARSR increases sensitivity of HCC cells to doxorubicin in vitro and in vivo. Mechanistically, we found that lncARSR physically associates with PTEN mRNA, promotes PTEN mRNA degradation, decreases PTEN expression, and activates PI3K/Akt pathway. PTEN is downregulated in HCC, and the expression of PTEN is negatively correlated with lncARSR in HCC tissues. Furthermore, the effects of lncARSR overexpression on doxorubicin resistance could be reversed by PI3K/Akt pathway inhibitor, and lncARSR knockdown-induced doxorubicin sensitivity could be reversed by PTEN depletion. Taken together, our results showed that upregulated lncARSR promotes doxorubicin resistance in HCC via modulating PTEN-PI3K/Akt pathway, and implied that lncARSR may serve as a promising prognostic biomarker and therapeutic target for HCC chemo-resistance. J. Cell. Biochem. 118: 4498-4507, 2017. © 2017 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: The findings suggest that suppression of autophagy and apoptosis by administration of rutin could attenuate doxorubicin-induced cardiotoxicity, which enhances the knowledge to explore new drugs and strategies for combating this devastating side effect induced by doxorbicin.

Journal ArticleDOI
TL;DR: Cisplatin, but not paclitaxel and doxorubicin, induced the enrichment of cancer stem cell (CSC) and conferred multidrug resistance in NSCLC cell lines and provided a novel perspective in the evolution of chemotherapy resistance.
Abstract: Chemotherapeutic agents are generally used as a frontline therapy for non-small cell lung cancer (NSCLC). However, resistance to chemotherapy arises rapidly in NSCLC, and the reasons for chemotherapy resistance have not been fully determined. Here, we found cisplatin, but not paclitaxel and doxorubicin, induced the enrichment of cancer stem cell (CSC) and conferred multidrug resistance in NSCLC cell lines. In vivo study confirmed drug-resistant tumors displayed the enhanced expressions of CSC transcription factors. Mechanistically, cisplatin treatment resulted in C/EBP-β-dependent increasing of TRIB1. The crucial role of TRIB1 in cisplatin-induced enrichment of CSC and drug resistance was verified by knockdown TRIB1. Interestingly, cisplatin treatment also contributed to the increasement of HDAC, the interaction of TRIB1 with HDAC, and inactivation of p53. Similarly, the silencing of HDAC led to reduction of cisplatin-induced CSC, and combined knockdown of HDAC and TRIB1 exhibited enhanced effect. Additionally, the combination of HDAC inhibitor and cisplatin showed a reinforced antitumor action in NSCLC cell lines with TRIB1-dependent manner and remarkably shrink tumors in xenograft models. Moreover, cisplatin-treated NSCLC patients with high levels of TRIB1 exhibited a significantly poorer prognosis. Our findings illustrate a novel perspective in the evolution of chemotherapy resistance and provide a promising approach for the treatment of patients with NSCLC.

Journal ArticleDOI
TL;DR: DOX‐loaded POEG‐b‐PSSDas micelles were more effective in inhibiting the tumor growth and prolonging the survival rate in an aggressive murine breast cancer model and a micellar formulation co‐loaded with DOX and DAS provides an attractive strategy for effective combination of tumor targeted therapy and traditional chemotherapy.

Journal ArticleDOI
14 Dec 2017-Blood
TL;DR: Findings establish SETD2 alteration as a mechanism of resistance to DNA-damaging chemotherapy, consistent with a local loss of DDR, and identify a potential therapeutic strategy to target SETd2-mutant leukemias.

Journal ArticleDOI
TL;DR: It is demonstrated that berberine sensitizes drug-resistant breast cancer to DOX chemotherapy and directly induces apoptosis through the dose-orchestrated AMPK signaling pathway in vitro and in vivo.
Abstract: Breast cancer is the most common malignancy in women. Although personalized or targeting molecular cancer therapy is more popular up to now, the cytotoxicity chemotherapy for patients with advanced breast cancer is considered as the alternative option. However, chemoresistance is still the common and critical limitation for breast cancer treatment. Berberine, known as AMPK activator, has shown multiple activities including antitumor effect. In this study, we investigate the chemosensitive effect of different dosages berberine on drug-resistant human breast cancer MCF-7/MDR cell in vitro and in vivo, and the mechanisms underlying AMPK activation on Doxorubicin (DOX) chemosensitivity. Our results showed that berberine could overcome DOX resistance in dose-orchestrated manner: On one hand, low-dose berberine can enhance DOX sensitivity in drug-resistance breast cancer cells through AMPK-HIF-1α-P-gp pathway. On the other hand, high-dose berberine alone directly induces apoptosis through the AMPK-p53 pathway with the independence of HIF-1α expression. Taken together, our findings demonstrate that berberine sensitizes drug-resistant breast cancer to DOX chemotherapy and directly induces apoptosis through the dose-orchestrated AMPK signaling pathway in vitro and in vivo. Berberine appears to be a promising chemosensitizer and chemotherapeutic drug for breast cancer treatment.

Journal ArticleDOI
TL;DR: A synergistic anti-cancer efficacy between DOX-mediated chemotherapy and Ce6-mediated photodynamic therapy (PDT) was achieved, resulting in reduced side effects to normal tissues/cells, and it renders promising applications for the programmed combination of chemotherapy and PDT toward cancer treatment.
Abstract: The precise and selective delivery of chemodrugs into tumors represents a critical requirement for anti-cancer therapy. Intelligent delivery systems that are responsive to a single internal or external stimulus often lack sufficient cancer selectivity, which compromises the drug efficacy and induces undesired side effects. To overcome this dilemma, we herein report a cancer-targeting vehicle which allows highly cancer-selective drug release in response to cascaded external (light) and internal (hypoxia) dual triggers. In particular, doxorubicin (DOX)-loaded, hypoxia-dissociable nanoparticles (NPs) were prepared from self-assembled polyethylenimine-nitroimidazole (PEI-NI) micelles that were further co-assembled with hyaluronic acid-Ce6 (HC). Upon accumulation in tumor cells, tumor site-specific light irradiation (660 nm, 10 mW cm−2) generated high levels of reactive oxygen species (ROS) and greatly enhanced the hypoxic levels to induce NP dissociation and accordingly DOX release. A synergistic anti-cancer efficacy between DOX-mediated chemotherapy and Ce6-mediated photodynamic therapy (PDT) was thus achieved, resulting in reduced side effects to normal tissues/cells. This study therefore provides an effective method to control the cancer-specific drug delivery by responding to cascaded multiple triggers, and it renders promising applications for the programmed combination of chemotherapy and PDT toward cancer treatment.

Journal ArticleDOI
TL;DR: It is found that GAS5 low-expressed in BTCC tissues and cells, and its low expression level had positive correlation with higher pathological grades of BTCC, and was a prognostic biomarker of disease free survival for BTCC patients.
Abstract: Bladder cancer is the most general malignant cancer in genitourinary system, more than 90% of BCs are bladder transitional cell carcinomas (BTCC). This study aimed to investigate the clinical significance of growth arrest-specific 5 (GAS5) gene and its regulatory effects of malignant proliferation and chemotherapy resistance to doxorubicin in BTCC cells. The expression of GAS5 was detected by quantitative real-time PCR. Statistical analysis was used to determine the relationship between GAS5 expression and clinical features and the prognostic value of GAS5 for disease free survival. MTT assay was used to detect cell proliferation ability and chemosensitivity. Dual-color flow cytometric method was used to detect cell apoptosis. The expression of Bcl-2 protein was examined by western blot. In this study, we found that GAS5 low-expressed in BTCC tissues and cells, and its low expression level had positive correlation with higher pathological grades of BTCC. Moreover, GAS5 was a prognostic biomarker of disease free survival for BTCC patients. GAS5 over-expression could inhibit cell proliferation of BTCC J82 and T24 cells significantly. The IC50 to doxorubicin in T24/DOX cells (resistance to doxorubicin) presented a conspicuous depression, GAS5 enhancement reduced the chemotherapy resistance to doxorubicin. GAS5 over-expression promoted apoptosis induced by doxorubicin in T24/DOX cells, and depressed the expression of anti-apoptosis protein Bcl-2. The results indicated that GAS5 regulated the chemotherapy resistance to doxorubicin via Bcl2 partly. In summary, lncRNA GAS5 was a prognostic biomarker of disease free survival in BTCC patients, and acted as a tumor-suppressing gene to inhibit malignant proliferation and resistance to doxorubicin in BTCC cells. LncRNA GAS5 might be a novel potential therapeutic target for BTCC.

Journal ArticleDOI
TL;DR: The most important side effects of PLD were skin toxicity and mucositis, but the proportion of patients who showed grade III and IV of these side effects was relatively low, and the occurrence of cardiotoxicity was considerably reduced in patients treated with PLD.
Abstract: Despite benefits of systemic chemotherapy in breast cancer treatment, several patients with early-stage breast cancer will develop metastatic breast cancer (MBC). Doxorubicin is among the most active agents against MBC. However, the use of doxorubicin is related to some life-threatening side effects including cardiotoxicity. Many efforts were made to lessen the side effects of doxorubicin and improve its efficacy. Pegylated liposomal doxorubicin (PLD) is a product claimed to achieve these two objectives because of its different pharmacokinetic profile. The aim of this study was to determine the side-effect profile of PLD in MBC through a systematic review of phase II clinical trials. A literature search in PubMed-MEDLINE was performed using terms covering nano-based pharmaceutical systems, ‘breast cancer’ and ‘doxorubicin’. Articles were evaluated according to the inclusion criteria. Reported hematological and non-hematological side effects were categorized. Out of 718 articles that were initially identified, 8 were in accordance with the inclusion criteria. We found that the most important side effects of PLD were skin toxicity and mucositis, but the proportion of patients who showed grade III and IV of these side effects was relatively low. On the other hand, the occurrence of cardiotoxicity, the most important problem with doxorubicin, was considerably reduced in patients treated with PLD. Although PLD has demonstrated a lower toxicity profile than conventional anthracyclines, it has also new side effects. However, it seems that the reduced cardiotoxicity of PLD has made it a more appropriate option in patients with MBC, especially in those with risk factors for cardiac diseases.

Journal ArticleDOI
TL;DR: The mechanisms underlying the anti-MDR effect of the Man-liposomes involved preferential nuclear accumulation of the therapeutic agents, enhanced cancer cell apoptosis, downregulation of Bcl-xl, and the induction of autophagy.
Abstract: Multidrug resistance (MDR) is a major hurdle in cancer chemotherapy and makes the treatment benefits unsustainable. Combination therapy is a commonly used method for overcoming MDR. In this study we investigated the anti-MDR effect of dihydroartemisinin (DHA), a derivative of artemisinin, in combination with doxorubicin (Dox) in drug-resistant human colon tumor HCT8/ADR cells. We developed a tumor-targeting codelivery system, in which the two drugs were co-encapsulated into the mannosylated liposomes (Man-liposomes). The Man-liposomes had a mean diameter of 158.8 nm and zeta potential of -15.8 mV. In the HCT8/ADR cells that overexpress the mannose receptors, the Man-liposomes altered the intracellular distribution of Dox, resulting in a high accumulation of Dox in the nuclei and thus displaying the highest cytotoxicity (IC50=0.073 μg/mL) among all the groups. In a subcutaneous HCT8/ADR tumor xenograft model, administration of the Man-liposomes resulted in a tumor inhibition rate of 88.59%, compared to that of 47.46% or 70.54%, respectively, for the treatment with free Dox or free Dox+DHA. The mechanisms underlying the anti-MDR effect of the Man-liposomes involved preferential nuclear accumulation of the therapeutic agents, enhanced cancer cell apoptosis, downregulation of Bcl-xl, and the induction of autophagy.

Journal ArticleDOI
TL;DR: It is suggested that CAFs can enhance drug resistance in cancer cells by inhibiting drug accumulation and counteracting drug-induced oxidative stress and this protective mechanism may represent a novel therapeutic target in cancer.
Abstract: Drug resistance is a major problem in cancer therapy. A growing body of evidence demonstrates that the tumor microenvironment, including cancer-associated fibroblasts (CAFs), can modulate drug sensitivity in tumor cells. We examined the effect of primary human CAFs on p53 induction and cell viability in prostate cancer cells on treatment with chemotherapeutic drugs. Co-culture with prostate CAFs or CAF-conditioned medium attenuated DNA damage and the p53 response to chemotherapeutic drugs and enhanced prostate cancer cell survival. CAF-conditioned medium inhibited the accumulation of doxorubicin, but not taxol, in prostate cancer cells in a manner that was associated with increased cancer cell glutathione levels. A low molecular weight fraction (<3 kDa) of CAF-conditioned medium had the same effect. CAF-conditioned medium also inhibited induction of reactive oxygen species (ROS) in both doxorubicin- and taxol-treated cancer cells. Our findings suggest that CAFs can enhance drug resistance in cancer cells by inhibiting drug accumulation and counteracting drug-induced oxidative stress. This protective mechanism may represent a novel therapeutic target in cancer.

Journal ArticleDOI
TL;DR: GEM‐based chemotherapy is a well‐tolerated, but modestly active, regimen against advanced ACC and remains an important option for salvage treatment for advanced ACC.
Abstract: Context Adrenocortical carcinoma (ACC) is rare and confers an unfavorable prognosis in advanced stages. Other than combination chemotherapy with cisplatin, etoposide, doxorubicin, and mitotane, the second- and third-line regimens are not well-established. Gemcitabine (GEM)-based chemotherapy was suggested in a phase 2 clinical trial with 28 patients. In other solid tumors, human equilibrative nucleoside transporter type 1 (hENT1) and/or ribonucleotide reductase catalytic subunit M1 (RRM1) expression have been associated with resistance to GEM. Objective To assess the efficacy of GEM-based chemotherapy in ACC in a real-world setting and the predictive role of molecular parameters. Design Retrospective multicenter study. Setting Referral centers of university hospitals. Patients and materials A total of 145 patients with advanced ACC were treated with GEM-based chemotherapy (132 with concomitant capecitabine). Formalin-fixed paraffin-embedded tumor material was available for 70 patients for immunohistochemistry. Outcome measures The main outcome measures were progression-free survival (PFS) and an objective response to GEM-based chemotherapy. The secondary objective was the predictive role of hENT1 and RRM1. Results The median PFS for the patient population was 12 weeks (range, 1 to 94). A partial response or stable disease was achieved in 4.9% and 25.0% of cases, with a median duration of 26.8 weeks. Treatment was generally well tolerated, with adverse events of grade 3 or 4 occurring in 11.0% of cases. No substantial effect of hENT1 and/or RRM1 expression was observed in response to GEM-based chemotherapy. Conclusions GEM-based chemotherapy is a well-tolerated, but modestly active, regimen against advanced ACC. No reliable molecular predictive factors could be identified. Owing to the scarce alternative therapeutic options, GEM-based chemotherapy remains an important option for salvage treatment for advanced ACC.