scispace - formally typeset
Search or ask a question
Topic

Drag coefficient

About: Drag coefficient is a research topic. Over the lifetime, 14471 publications have been published within this topic receiving 303196 citations. The topic is also known as: drag factor.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present the results of a numerical study on the flow characteristics and heat transfer over two equal square cylinders in a tandem arrangement, and the instantaneous and mean streamlines, vorticity and isotherm patterns for different Reynolds numbers are presented and discussed.
Abstract: This paper presents the results of a numerical study on the flow characteristics and heat transfer over two equal square cylinders in a tandem arrangement. Spacing between the cylinders is five widths of the cylinder and the Reynolds number ranges from 1 to 200, Pr=0.71. Both steady and unsteady incompressible laminar flow in the 2D regime are performed with a finite volume code based on the SIMPLEC algorithm and non-staggered grid. A study of the effects of spatial resolution and blockage on the results is provided. In this study, the instantaneous and mean streamlines, vorticity and isotherm patterns for different Reynolds numbers are presented and discussed. In addition, the global quantities such as pressure and viscous drag coefficients, RMS lift and drag coefficients, recirculation length, Strouhal number and Nusselt number are determined and discussed for various Reynolds numbers. Copyright © 2008 John Wiley & Sons, Ltd.

99 citations

Journal ArticleDOI
TL;DR: In this article, scanning force microscopy (SFM) images of lipid membranes at -25°C were compared with those at room temperature both in air and in glycerol/buffer solution.

99 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examine the reasons for the large range in reported CD and assess the limitations of using CD and roughness length scales to parameterize drag on reefs and show that CD and z0 are functions of canopy geometry and velocity profile shape.
Abstract: [1] In a hydrodynamic sense, a coral reef is a complex array of obstacles that exerts a net drag force on water moving over the reef. This drag is typically parameterized in ocean circulation models using drag coefficients (CD) or roughness length scales (z0); however, published CD for coral reefs span two orders of magnitude, posing a challenge to predictive modeling. Here we examine the reasons for the large range in reported CD and assess the limitations of using CD and z0 to parameterize drag on reefs. Using a formal framework based on the 3-D spatially averaged momentum equations, we show that CD and z0 are functions of canopy geometry and velocity profile shape. Using an idealized two-layer model, we illustrate that CD can vary by more than an order of magnitude for the same geometry and flow depending on the reference velocity selected and that differences in definition account for much of the range in reported CD values. Roughness length scales z0 are typically used in 3-D circulation models to adjust CD for reference height, but this relies on spatially averaged near-bottom velocity profiles being logarithmic. Measurements from a shallow backreef indicate that z0 determined from fits to point measurements of velocity profiles can be very different from z0 required to parameterize spatially averaged drag. More sophisticated parameterizations for drag and shear stresses are required to simulate 3-D velocity fields over shallow reefs; in the meantime, we urge caution when using published CD and z0 values for coral reefs.

99 citations

Journal ArticleDOI
TL;DR: The decomposition of swimmer drag into DSF, DP and DW suggests that increasing DSF on the upper-body of a swimmer reducesDP and DW by tripping the boundary layer and attaching the flow to the body from the shoulder to the knees.
Abstract: MOLLENDORF, J. C., A. C. TERMIN II, E. OPPENHEIM, and D. R. PENDERGAST. Effect of Swim Suit Design on Passive Drag. Med. Sci. Sports Exerc., Vol. 36, No. 6, pp. 1029 –1035, 2004. Introduction: The drag (D) of seven (7) male swimmers wearing five (5) swimsuits was investigated. Methods: The drag was measured during passive surface tows at speeds from 0.2 up to 2.2 m·s 1 and during starts and push-offs. The swimsuits varied in body coverage from shoulder-to-ankle (SA), shoulder-to-knee (SK), waist-to-ankle (WA) and waist-to-knee (WK) and briefs (CS). Results: Differences in total drag among the suits were small, but significant. In terms of least drag at 2.2 m·s 1 , the swimsuits ranked: SK, SA, WA, WK and CS. The drag was decomposed into its pressure drag (DP), skin friction drag (DSF) and wave drag (DW) components using nonlinear regression and classical formulations for each drag component. The transition-to-turbulence Reynolds number and decreasing frontal area with speed were taken into account. The transition-to-turbulence Reynolds number location was found to be very close to the swimmers’ “leading edge,” i.e. the head. Flow was neither completely laminar, nor completely turbulent; but rather, it was transitional over most of the body. The D P contributed the most to drag at low speeds (1.0 m·s 1 ) and DW the least at all speeds. DSF contributed the most at higher speeds for SA and SK suits, whereas DP and DW were reduced compared with the other suits. Conclusion: The decomposition of swimmer drag into DSF ,D P and DW suggests that increasing DSF on the upper-body of a swimmer reduces DP and DW by tripping the boundary layer and attaching the flow to the body from the shoulder to the knees. It is possible that body suits that cover the torso and legs may reduce drag and improve performance of swimmers. Key Words: FRICTION DRAG, PASSIVE DRAG, WAVE DRAG, TURBULENT FLOW, LAMINAR FLOW

99 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the magnitude, nature, and dynamics of the nocturnal drainage flow in a subalpine forest ecosystem with complex terrain and used an experimental approach involving four towers, each with vertical profiling of wind speed to measure the magnitude of drainage flows and dynamics in their occurrence.
Abstract: [1] The nocturnal drainage flow of air causes significant uncertainty in ecosystem CO2, H2O, and energy budgets determined with the eddy covariance measurement approach. In this study, we examined the magnitude, nature, and dynamics of the nocturnal drainage flow in a subalpine forest ecosystem with complex terrain. We used an experimental approach involving four towers, each with vertical profiling of wind speed to measure the magnitude of drainage flows and dynamics in their occurrence. We developed an analytical drainage flow model, constrained with measurements of canopy structure and SF6 diffusion, to help us interpret the tower profile results. Model predictions were in good agreement with observed profiles of wind speed, leaf area density, and wind drag coefficient. Using theory, we showed that this one-dimensional model is reduced to the widely used exponential wind profile model under conditions where vertical leaf area density and drag coefficient are uniformly distributed. We used the model for stability analysis, which predicted the presence of a very stable layer near the height of maximum leaf area density. This stable layer acts as a flow impediment, minimizing vertical dispersion between the subcanopy air space and the atmosphere above the canopy. The prediction is consistent with the results of SF6 diffusion observations that showed minimal vertical dispersion of nighttime, subcanopy drainage flows. The stable within-canopy air layer coincided with the height of maximum wake-to-shear production ratio. We concluded that nighttime drainage flows are restricted to a relatively shallow layer of air beneath the canopy, with little vertical mixing across a relatively long horizontal fetch. Insight into the horizontal and vertical structure of the drainage flow is crucial for understanding the magnitude and dynamics of the mean advective CO2 flux that becomes significant during stable nighttime conditions and are typically missed during measurement of the turbulent CO2 flux. The model and interpretation provided in this study should lead to research strategies for the measurement of these advective fluxes and their inclusion in the overall mass balance for CO2 at this site with complex terrain.

99 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
92% related
Boundary layer
64.9K papers, 1.4M citations
92% related
Turbulence
112.1K papers, 2.7M citations
91% related
Vortex
72.3K papers, 1.3M citations
87% related
Laminar flow
56K papers, 1.2M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023307
2022688
2021489
2020504
2019504
2018456