scispace - formally typeset
Search or ask a question
Topic

Drag coefficient

About: Drag coefficient is a research topic. Over the lifetime, 14471 publications have been published within this topic receiving 303196 citations. The topic is also known as: drag factor.


Papers
More filters
Journal ArticleDOI
Yuichi Murai1
TL;DR: A review of the role of bubbles in drag reduction can be found in this paper, where a series of precisely designed experimentations has led to the conclusion that the frictional drag reduction by bubble injection has multiple manifestations dependent on bubble size and flow speed.
Abstract: The injection of gas bubbles into a turbulent boundary layer of a liquid phase has multiple different impacts on the original flow structure. Frictional drag reduction is a phenomenon resulting from their combined effects. This explains why a number of different void–drag reduction relationships have been reported to date, while early works pursued a simple universal mechanism. In the last 15 years, a series of precisely designed experimentations has led to the conclusion that the frictional drag reduction by bubble injection has multiple manifestations dependent on bubble size and flow speed. The phenomena are classified into several regimes of two-phase interaction mechanisms. Each regime has inherent physics of bubbly liquid, highlighted by keywords such as bubbly mixture rheology, the spectral response of bubbles in turbulence, buoyancy-dominated bubble behavior, and gas cavity breakup. Among the regimes, bubbles in some selected situations lose the drag reduction effect owing to extra momentum transfer promoted by their active motions. This separates engineers into two communities: those studying small bubbles for high-speed flow applications and those studying large bubbles for low-speed flow applications. This article reviews the roles of bubbles in drag reduction, which have been revealed from fundamental studies of simplified flow geometries and from development of measurement techniques that resolve the inner layer structure of bubble-mixed turbulent boundary layers.

145 citations

Journal ArticleDOI
TL;DR: In this article, the modelling of viscous dissipation in a porous medium saturated by an incompressible fluid is discussed, for the case of Darcy, Forchheimer and Brinkman models.
Abstract: The modelling of viscous dissipation in a porous medium saturated by an incompressible fluid is discussed, for the case of Darcy, Forchheimer and Brinkman models. An apparent paradox relating to the effect of inertial effects on viscous dissipation is resolved, and some wider aspects of resistance to flow (concerning quadratic drag and cubic drag) in a porous medium are discussed. Criteria are given for the importance or otherwise of viscous dissipation in various situations.

145 citations

Journal ArticleDOI
TL;DR: In this paper, it is shown that the skin-friction drag in a fully developed channel can be sustained below that corresponding to the laminar profile when the flow is subjected to surface blowing and suction in the form of an upstream travelling wave.
Abstract: It is shown, by direct numerical simulations, that the skin-friction drag in a fully developed channel can be sustained below that corresponding to the laminar profile when the flow is subjected to surface blowing and suction in the form of an upstream travelling wave. A key mechanism that induces the sub-laminar drag is the creation of positive (negative) Reynolds shear stress in the wall region, where normally negative (positive) Reynolds shear stress is expected given the mean shear. This mechanism is contained in the linearized Navier–Stokes equations, thus allowing linear analysis of the observed phenomena. When applied to a fully developed turbulent channel flow, skin-friction drag is also significantly reduced by an upstream travelling wave, demonstrating that the surface blowing and suction in the form of such a wave is also effective in fully developed turbulent flows. Consideration of the energy budget shows a possibility of net drag reduction in turbulent channel flows with the present open-loop control.

145 citations

01 Jun 1981
TL;DR: In this paper, a natural-laminar flow airfoil for general aviation applications, the NLF(1)-0416, was designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel.
Abstract: A natural-laminar-flow airfoil for general aviation applications, the NLF(1)-0416, was designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low-speed airfoils with the low cruise drag of the NACA 6-series airfoils was achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge was also met. Comparisons of the theoretical and experimental results show excellent agreement. Comparisons with other airfoils, both laminar flow and turbulent flow, confirm the achievement of the basic objective.

144 citations

26 Aug 2004
TL;DR: In this paper, a large-eddy simulation (LES) model for a city (LES-CITY) was used to investigate the turbulent organized structures (TOS) above building arrays, which roughly corresponded to the conventional classification of D-type and K-type roughness.
Abstract: Turbulent organized structures (TOS) above building arrays were investigated using a large-eddy simulation (LES) model for a city (LES-CITY). Square and staggered building arrays produced contrasting behaviour in terms of turbulence that roughly corresponded to the conventional classification of ‘D-type’ and ‘K-type’ roughness, respectively: (1) The drag coefficients (referred to the building height) for staggered arrays were sensitive to building area density, but those for square arrays were not. (2) The relative contributions of ejections to sweeps (S2/S4) at the building height for square arrays were sensitive to building area density and nearly equalled or exceeded 1.0 (ejection dominant), but those for staggered arrays were insensitive to building area density and were mostly below 1.0 (sweep dominant). (3) Streaky patterns of longitudinal low speed regions (i.e., low speed streaks) existed in all flows regardless of array type. Height variations of the buildings in the square array drastically increased the drag coefficient and modified the turbulent flow structures. The mechanism of D-type and K-type urban-like roughness flows and the difference from vegetation flows are discussed. Although urban-like roughness flows exhibited mixed properties of mixing layers and flat-wall boundary layers as far as S2/S4 was concerned, the turbulent organized structures of urban-like roughness flows resembled those of flat-wall boundary layers.

144 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
92% related
Boundary layer
64.9K papers, 1.4M citations
92% related
Turbulence
112.1K papers, 2.7M citations
91% related
Vortex
72.3K papers, 1.3M citations
87% related
Laminar flow
56K papers, 1.2M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023307
2022688
2021489
2020504
2019504
2018456