scispace - formally typeset
Topic

Drift velocity

About: Drift velocity is a(n) research topic. Over the lifetime, 6897 publication(s) have been published within this topic receiving 129602 citation(s). The topic is also known as: drift speed.
Papers
More filters

Journal ArticleDOI
Abstract: It was shown by Stokes that in a water wave the particles of fluid possess, apart from their orbital motion, a steady second-order drift velocity (usually called the mass-transport velocity). Recent experiments, however, have indicated that the mass-transport velocity can be very different from that predicted by Stokes on the assumption of a perfect, non-viscous fluid. In this paper a general theory of mass transport is developed, which takes account of the viscosity, and leads to results in agreement with observation. Part I deals especially with the interior of the fluid. It is shown that the nature of the motion in the interior depends upon the ratio of the wave amplitude a to the thickness $\delta $ of the boundary layer: when a$^{2}$/$\delta ^{2}$ is small the diffusion of vorticity takes place by viscous 'conduction'; when a$^{2}$/$\delta ^{2}$ is large, by convection with the mass-transport velocity. Appropriate field equations for the stream function of the mass transport are derived. The boundary layers, however, require separate consideration. In part II special attention is given to the boundary layers, and a general theory is developed for two types of oscillating boundary: when the velocities are prescribed at the boundary, and when the stresses are prescribed. Whenever the motion is simple-harmonic the equations of motion can be integrated exactly. A general method is described for determining the mass transport throughout the fluid in the presence of an oscillating body, or with an oscillating stress at the boundary. In part III, the general method of solution described in parts I and II is applied to the cases of a progressive and a standing wave in water of uniform depth. The solutions are markedly different from the perfect-fluid solutions with irrotational motion. The chief characteristic of the progressive-wave solution is a strong forward velocity near the bottom. The predicted maximum velocity near the bottom agrees well with that observed by Bagnold.

1,139 citations


Journal ArticleDOI
I. A. Blech1
Abstract: The aluminum electromigration drift velocity was measured at the temperature range 250–400 °C. A threshold current density was found inversely proportional to the stripe length. An activation energy of 0.65 eV was found for the drift velocity. The occurrence of the threshold is explained by opposing chemical gradients created by the atom pile‐up and depletion at the stripe ends. The threshold may explain several observations reported previously. The threshold is increased by decreasing the temperature or by enclosing the aluminum in silicon nitride. Virtually no electromigration is seen for very short aluminum stripes even at current densities above 106 A/cm2.

1,124 citations


Journal ArticleDOI
Abstract: We consider a Brownian particle in a periodic potential under heavy damping. The second law forbids it from displaying any net drift speed, even if the symmetry of the potential is broken. But if the particle is subject to an external force having time correlations, detailed balance is lost and the particle can exhibit a nonzero net drift speed. Thus, broken symmetry and time correlations are sufficient ingredients for transport.

896 citations


Journal ArticleDOI
Abstract: In view of the practical importance of the drift-flux model for two-phase flow analysis in general and in the analysis of nuclear-reactor transients and accidents in particular, the kinematic constitutive equation for the drift velocity has been studied for various two-phase flow regimes. The constitutive equation that specifies the relative motion between phases in the drift-flux model has been derived by taking into account the interfacial geometry, the body-force field, shear stresses, and the interfacial momentum transfer, since these macroscopic effects govern the relative velocity between phases. A comparison of the model with various experimental data over various flow regimes and a wide range of flow parameters shows a satisfactory agreement.

735 citations


Journal ArticleDOI
Abstract: The electrical conduction mechanism in the film plane of ultrathin, evaporated metal films was investigated. These films consist of a planar array of many small discrete islands. The conduction process consists of, first, charge carrier creation which is thermally activated and involves charge transfer between initially neutral particles, and, second, the drift velocity of these charges in an applied field. Charge transfer between particles occurs by tunneling. The following features were predicted and can be verified experimentally: the conductivity depends exponentially on reciprocal temperature, and it should be independent of field at low fields. Deviations from the exponential temperature dependence can be understood in terms of a spectrum of activation energies, while deviations from Ohm's law at high fields can be explained readily in terms of a field dependent activation energy.

685 citations


Network Information
Related Topics (5)
Plasma oscillation

7.5K papers, 159K citations

92% related
Electron temperature

11.9K papers, 216.7K citations

91% related
Electric field

87.1K papers, 1.4M citations

91% related
Cyclotron resonance

6.4K papers, 133.5K citations

90% related
Waves in plasmas

8.3K papers, 158.1K citations

90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20222
202189
2020119
2019110
2018127
2017136

Top Attributes

Show by:

Topic's top 5 most impactful authors

Michael Shur

27 papers, 637 citations

David K. Ferry

25 papers, 299 citations

Takashi Hibiki

24 papers, 570 citations

J. de Urquijo

19 papers, 321 citations

Mamoru Ishii

17 papers, 522 citations