scispace - formally typeset
Search or ask a question
Topic

Drug carrier

About: Drug carrier is a research topic. Over the lifetime, 18276 publications have been published within this topic receiving 997718 citations. The topic is also known as: drug carriers & drug vehicle.


Papers
More filters
Journal ArticleDOI
TL;DR: By sequestering the relatively hydrophobic pH-responsive core component within a more hydrophilic pH-insensitive shell, nontoxic delivery of small molecules and proteins to the cytosol was achieved in dendritic cells, a key cell type of interest in the context of vaccines and immunotherapy.
Abstract: Polycations that absorb protons in response to the acidification of endosomes can theoretically disrupt these vesicles via the “proton sponge” effect. To exploit this mechanism, we created nanoparticles with a segregated core−shell structure for efficient, noncytotoxic intracellular drug delivery. Cross-linked polymer nanoparticles were synthesized with a pH-responsive core and hydrophilic charged shell designed to disrupt endosomes and mediate drug/cell binding, respectively. By sequestering the relatively hydrophobic pH-responsive core component within a more hydrophilic pH-insensitive shell, nontoxic delivery of small molecules and proteins to the cytosol was achieved in dendritic cells, a key cell type of interest in the context of vaccines and immunotherapy.

285 citations

Journal ArticleDOI
TL;DR: Alginate nanoparticles can serve as an ideal carrier for the controlled release of antitubercular drugs because of their relative bioavailabilities and the chemotherapeutic efficacy was comparable with 45 daily doses of oral free drugs.

285 citations

Journal ArticleDOI
TL;DR: These studies demonstrate that CPNPs are effective carriers of dyes and drugs for bioimaging and, potentially, for therapeutic intervention.
Abstract: Encapsulation of imaging agents and drugs in calcium phosphate nanoparticles (CPNPs) has potential as a nontoxic, bioresorbable vehicle for drug delivery to cells and tumors. The objectives of this study were to develop a calcium phosphate nanoparticle encapsulation system for organic dyes and therapeutic drugs so that advanced fluoresence methods could be used to assess the efficiency of drug delivery and possible mechanisms of nanoparticle bioabsorption. Highly concentrated CPNPs encapsulating a variety of organic fluorophores were successfully synthesized. Well-dispersed CPNPs encapsulating Cy3 amidite exhibited nearly a 5-fold increase in fluorescence quantum yield when compared to the free dye in PBS. FCS diffusion data and cell staining were used to show pH-dependent dissolution of the particles and cellular uptake, respectively. Furthermore, an experimental hydrophobic cell growth inhibitor, ceramide, was successfully delivered in vitro to human vascular smooth muscle cells via encapsulation in CPNPs. These studies demonstrate that CPNPs are effective carriers of dyes and drugs for bioimaging and, potentially, for therapeutic intervention.

284 citations

Journal ArticleDOI
TL;DR: The mucoadhesive polymers carbomer 934P and chitosan hydrochloride are able to enhance the intestinal absorption of buserelin in vivo in rats, and may therefore be promising excipients in peroral delivery systems for peptide drugs.
Abstract: Purpose. To evaluate the effect of the crosslinked poly(acrylate) carbomer 934P (C934P) and its freeze-dried neutralized sodium salt (FNaC934P) as well as chitosan hydrochloride on the intestinal absorption of the peptide drug buserelin.

284 citations

Journal ArticleDOI
Wei Wu1, Yang Wang1, Li Que1
TL;DR: It was concluded that bioavailability of silymarin was enhanced greatly by SMEDDS and alternative mechanisms, such as improved lymphatic transport pathway, other than improved release may contribute to enhancement of bio availability of slymarin.

284 citations


Network Information
Related Topics (5)
Drug delivery
49.7K papers, 1.8M citations
96% related
Nanoparticle
85.9K papers, 2.6M citations
83% related
In vivo
61.3K papers, 1.9M citations
82% related
Polymer
131.4K papers, 2.6M citations
80% related
Particle size
69.8K papers, 1.7M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202366
2022180
2021645
2020815
2019788
2018960