scispace - formally typeset
Search or ask a question
Topic

Drug carrier

About: Drug carrier is a research topic. Over the lifetime, 18276 publications have been published within this topic receiving 997718 citations. The topic is also known as: drug carriers & drug vehicle.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors developed a novel mucoadhesive DL-lactide/glycolide copolymer (PLGA) nanosphere system to improve peptide absorption and prolong the physiological activity following oral administration.
Abstract: The purpose of this work was to develop a novel mucoadhesive DL-lactide/glycolide copolymer (PLGA) nanosphere system to improve peptide absorption and prolong the physiological activity following oral administration. The desired PLGA nanospheres with elcatonin were prepared by the emulsion solvent diffusion method to coat the surface of the resultant nanospheres with a mucoadhesive polymer such as chitosan, poly(acrylic acid), and sodium alginate. Their mucoadhesive properties were evaluated by measuring the nanospheres adsorbed to a rat everted intestinal sac (in vitro). The chitosan-coated nanospheres showed higher mucoadhesion to the everted intestinal tract in saline than the other polymer-coated nanospheres. There was no mucoadhesion site-specificity of the chitosan-coated nanospheres between duodenal, jejunal, and ileal sacs. The payload of drug in the chitosan-coated nanospheres was successfully increased by using the solvent diffusion method in oil. The pattern of drug release of the resultant nanospheres did not differ markedly from that of uncoated nanospheres. The chitosan-coated nanospheres with elcatonin were administered intragastrically to fasted Wistar rats. The chitosan-coated nanosphere reduced significantly the blood calcium level compared with elcatonin solution and uncoated nanospheres, and the reduced calcium level was sustained for a period of 48 hr. Even under nonfasting conditions, the mucoadhesion of chitosan-coated nanospheres was unaltered and the reduction in blood Ca levels was maintained satisfactorily.

244 citations

Journal ArticleDOI
Jim Jiao1
TL;DR: This review attempts to place in perspective the importance of polyoxyethylated nonionic surfactants in the design and development of topical ocular drug delivery systems by assessing their compatibility with common ophthalmic inactive ingredients, their impact on product stability, and their roles in facilitating ocular drugs to reach the target sites.

244 citations

Journal ArticleDOI
TL;DR: The results provide a method of achieving prolonged drug release through self-assembly of polymeric shells on drug microcrystals through layer-by-layer (LbL) assembly.

244 citations

Journal ArticleDOI
TL;DR: There is still room for improvement in CsA ocular application, as none of these formulations is ideal, and the use of colloidal carriers, microspheres, implants and liposomes have been developed to be directly administered subconjunctivally or intravitreally in order to enhance C'sA concentration in the vitreous.

244 citations

Journal ArticleDOI
TL;DR: Biocompatibility is discussed, specifically as it relates to drug delivery systems, which differ from other biomaterial-based devices by possibly containing large quantities of drugs with their own effects on tissues.
Abstract: Drug delivery technology has emerged as an important focus of biotechnological research and commercial enterprise. While much attention is justifiably focused on the design and effectiveness of drug delivery devices, the nature of their interaction with surrounding tissues – their biocompatibility – is crucial. Here we discuss biocompatibility, specifically as it relates to drug delivery systems, which differ from other biomaterial-based devices by possibly containing large quantities of drugs with their own effects on tissues.

244 citations


Network Information
Related Topics (5)
Drug delivery
49.7K papers, 1.8M citations
96% related
Nanoparticle
85.9K papers, 2.6M citations
83% related
In vivo
61.3K papers, 1.9M citations
82% related
Polymer
131.4K papers, 2.6M citations
80% related
Particle size
69.8K papers, 1.7M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202366
2022180
2021645
2020815
2019788
2018960