scispace - formally typeset
Search or ask a question
Topic

Drug carrier

About: Drug carrier is a research topic. Over the lifetime, 18276 publications have been published within this topic receiving 997718 citations. The topic is also known as: drug carriers & drug vehicle.


Papers
More filters
Journal ArticleDOI
TL;DR: Folate-linked nanoparticles represent a potential new drug carrier for tumor cell-selective targeting in PEG-coated biodegradable nanoparticles coupled to folic acid to target the folate-binding protein.

536 citations

Journal ArticleDOI
TL;DR: This review presents an overview of the literature regarding different shedding strategies that have been investigated for the preparation of sterically stabilized nanoparticulate by means of shedding, i.e. a loss of the coating after arrival at the target site.
Abstract: Nanoparticles, such as liposomes, polymeric micelles, lipoplexes and polyplexes are frequently studied as targeted drug carrier systems. The ability of these particles to circulate in the bloodstream for a prolonged period of time is often a prerequisite for successful targeted delivery. To achieve this, hydrophilic ‘stealth’ polymers, such as poly(ethylene glycol) (PEG), are used as coating materials. Such polymers shield the particle surface and thereby reduce opsonization by blood proteins and uptake by macrophages of the mononuclear phagocyte system. Yet, after localizing in the pathological site, nanoparticles should deliver their contents in an efficient manner to achieve a sufficient therapeutic response. The polymer coating, however, may hinder drug release and target cell interaction and can therefore be an obstacle in the realization of the therapeutic response. Attempts have been made to enhance the therapeutic efficacy of sterically stabilized nanoparticles by means of shedding, i.e. a loss of the coating after arrival at the target site. Such an ‘unmasking’ process may facilitate drug release and/or target cell interaction processes. This review presents an overview of the literature regarding different shedding strategies that have been investigated for the preparation of sterically stabilized nanoparticulates. Detach mechanisms and stimuli that have been used are described.

535 citations

Journal ArticleDOI
TL;DR: The advances that are shifting these molecular systems from simple polymeric carriers to smart-complex protein-polymer assemblies, such as nanoreactors or synthetic organelles are illustrated.
Abstract: One strategy in modern medicine is the development of new platforms that combine multifunctional compounds with stable, safe carriers in patient-oriented therapeutic strategies. The simultaneous detection and treatment of pathological events through interactions manipulated at the molecular level offer treatment strategies that can decrease side effects resulting from conventional therapeutic approaches. Several types of nanocarriers have been proposed for biomedical purposes, including inorganic nanoparticles, lipid aggregates, including liposomes, and synthetic polymeric systems, such as vesicles, micelles, or nanotubes.Polymeric vesicles—structures similar to lipid vesicles but created using synthetic block copolymers—represent an excellent candidate for new nanocarriers for medical applications. These structures are more stable than liposomes but retain their low immunogenicity. Significant efforts have been made to improve the size, membrane flexibility, and permeability of polymeric vesicles and to ...

535 citations

Journal ArticleDOI
TL;DR: F fluorinated lipids and fluorinated surfactants can be used to elaborate and stabilize various colloidal systems, including different types of emulsions, vesicles and tubules that also show promise for controlled release drug delivery.

535 citations

Journal ArticleDOI
TL;DR: Multifunctional nanoparticles that are tumor-targeted drug carriers, long-lasting ultrasound contrast agents, and enhancers of ultrasound-mediated drug delivery have been developed and deserve further exploration as cancer therapeutics.
Abstract: Background Drug delivery in polymeric micelles combined with tumor irradiation by ultrasound results in effective drug targeting, but this technique requires prior tumor imaging. A technology that combined ultrasound imaging with ultrasound-mediated nanoparticle-based targeted chemotherapy could therefore have important applications in cancer treatment. Methods Mixtures of drug-loaded polymeric micelles and perfluoropentane (PFP) nano/microbubbles stabilized by the same biodegradable block copolymer were prepared. Size distribution of nanoparticles was measured by dynamic light scattering. Cavitation activity (oscillation, growth, and collapse of microbubbles) under ultrasound was assessed based on the changes in micelle/microbubble volume ratios. The effect of the nano/microbubbles on the ultrasound-mediated cellular uptake of doxorubicin (Dox) in MDA MB231 breast tumors in vitro and in vivo (in mice bearing xenograft tumors) was determined by flow cytometry. Statistical tests were two-sided. Results Phase state and nanoparticle sizes were sensitive to the copolymer/perfluorocarbon volume ratio. At physiologic temperatures, nanodroplets converted into nano/microbubbles. Doxorubicin was localized in the microbubble walls formed by the block copolymer. Upon intravenous injection into mice, Dox-loaded micelles and nanobubbles extravasated selectively into the tumor interstitium, where the nanobubbles coalesced to produce microbubbles with a strong, durable ultrasound contrast. Doxorubicin was strongly retained in the microbubbles but released in response to therapeutic ultrasound. Microbubbles cavitated under the action of tumor-directed ultrasound, which enhanced intracellular Dox uptake by tumor cells in vitro to a statistically significant extent relative to that observed with unsonicated microbubbles (drug uptake ratio = 4.60; 95% confidence interval [CI] = 1.70 to 12.47; P = .017) and unsonicated micelles (drug uptake ratio = 7.97; 95% CI = 3.72 to 17.08; P = .0032) and resulted in tumor regression in the mouse model. Conclusions Multifunctional nanoparticles that are tumor-targeted drug carriers, long-lasting ultrasound contrast agents, and enhancers of ultrasound-mediated drug delivery have been developed and deserve further exploration as cancer therapeutics.

533 citations


Network Information
Related Topics (5)
Drug delivery
49.7K papers, 1.8M citations
96% related
Nanoparticle
85.9K papers, 2.6M citations
83% related
In vivo
61.3K papers, 1.9M citations
82% related
Polymer
131.4K papers, 2.6M citations
80% related
Particle size
69.8K papers, 1.7M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202366
2022180
2021645
2020815
2019788
2018960