scispace - formally typeset
Search or ask a question
Topic

Drug carrier

About: Drug carrier is a research topic. Over the lifetime, 18276 publications have been published within this topic receiving 997718 citations. The topic is also known as: drug carriers & drug vehicle.


Papers
More filters
Journal ArticleDOI
TL;DR: The present review provides a concise description of the most important applications of PEO-PPO-based copolymers in the Pharmaceutical Technology field as means for attaining improved solubility, stability, release, and bioavailability of drugs.

517 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the brain concentration of systemically administered doxorubicin can be enhanced over 60-fold by binding to biodegradable poly(butyl cyanoacrylate) nanoparticles, overcoated with the nonionic surfactant polysorbate 80.
Abstract: Purpose. To investigate the possibility of delivering of anticancer drugs into the brain using colloidal carriers (nanoparticles). Methods. Rats obtained 5 mg/kg of doxorubicin by i v. injection in form of 4 preparations : 1. a simple solution in saline, 2. a simple solution in polysorbate 80 1% in saline, 3. bound to poly (butyl cyanoacrylate) nanoparticles, and 4. bound to poly(butyl cyanoacrylate) nanoparticles overcoated with 1% polysorbate 80 (Tween® 80). After sacrifice of the animals after 10 min, 1, 2, 4, 6, and 8 hours, the doxorubicin concentrations in plasma, liver, spleen, lungs, kidneys, heart and brain were determined after extraction by HPLC. Results. No significant difference in the body distribution was observed between the two solution formulations. The two nanoparticle formulations very significantly decreased the heart concentrations. High brain concentrations of doxorubicin (>6 μg/g) were achieved with the nanoparticles overcoated with polysorbate 80 between 2 and 4 hours. The brain concentrations observed with the other three preparations were always below the detection limit (< 0.1 |μg/g). Conclusions. The present study demonstrates that the brain concentration of systemically administered doxorubicin can be enhanced over 60-fold by binding to biodegradable poly(butyl cyanoacrylate) nanoparticles, overcoated with the nonionic surfactant polysorbate 80. It is highly probable that coated particles reached the brain intact and released the drug after endocytosis by the brain blood vessel endothelial cells.

517 citations

Journal ArticleDOI
TL;DR: This review addresses recent work utilizing biodegradable polymers for controlled drug delivery, focusing on micro- and nanoparticulate delivery systems containing poly(lactic acid), poly(glycolic acid) or their copolymers.

517 citations

Journal ArticleDOI
TL;DR: This work has combined the drug release and delivery potential of nanoparticle (NP) systems with the ease of flow, processing, and aerosolization potential of large porous particle (LPP) systems by spray drying solutions of polymeric and nonpolymeric NPs into extremely thin-walled macroscale structures.
Abstract: We have combined the drug release and delivery potential of nanoparticle (NP) systems with the ease of flow, processing, and aerosolization potential of large porous particle (LPP) systems by spray drying solutions of polymeric and nonpolymeric NPs into extremely thin-walled macroscale structures. These hybrid LPPs exhibit much better flow and aerosolization properties than the NPs; yet, unlike the LPPs, which dissolve in physiological conditions to produce molecular constituents, the hybrid LPPs dissolve to produce NPs, with the drug release and delivery advantages associated with NP delivery systems. Formation of the large porous NP (LPNP) aggregates occurs via a spray-drying process that ensures the drying time of the sprayed droplet is sufficiently shorter than the characteristic time for redistribution of NPs by diffusion within the drying droplet, implying a local Peclet number much greater than unity. Additional control over LPNPs physical characteristics is achieved by adding other components to the spray-dried solutions, including sugars, lipids, polymers, and proteins. The ability to produce LPNPs appears to be largely independent of molecular component type as well as the size or chemical nature of the NPs.

516 citations

Journal ArticleDOI
TL;DR: The state of knowledge of silica containing mesoporous nanoparticles and specific application in various biomedical fields is presented.
Abstract: Due to lack of specification and solubility of drug molecules, patients have to take high doses of the drug to achieve the desired therapeutic effects for the treatment of diseases. To solve these problems, there are various drug carriers present in the pharmaceuticals, which can used to deliver therapeutic agents to the target site in the body. Mesoporous silica materials become known as a promising candidate that can overcome above problems and produce effects in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles (MSNs) are widely used as a delivery reagent because silica possesses favorable chemical properties, thermal stability, and biocompatibility. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release of the target site. The properties of mesoporous, including pore size, high drug loading, and porosity as well as the surface properties, can be altered depending on additives used to prepare MSNs. Active surface enables functionalization to changed surface properties and link therapeutic molecules. They are used as widely in the field of diagnosis, target drug delivery, bio-sensing, cellular uptake, etc., in the bio-medical field. This review aims to present the state of knowledge of silica containing mesoporous nanoparticles and specific application in various biomedical fields.

515 citations


Network Information
Related Topics (5)
Drug delivery
49.7K papers, 1.8M citations
96% related
Nanoparticle
85.9K papers, 2.6M citations
83% related
In vivo
61.3K papers, 1.9M citations
82% related
Polymer
131.4K papers, 2.6M citations
80% related
Particle size
69.8K papers, 1.7M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202366
2022180
2021645
2020815
2019788
2018960