scispace - formally typeset
Search or ask a question
Topic

Dykstra's projection algorithm

About: Dykstra's projection algorithm is a research topic. Over the lifetime, 1978 publications have been published within this topic receiving 39910 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A very broad and flexible framework is investigated which allows a systematic discussion of questions on behaviour in general Hilbert spaces and on the quality of convergence in convex feasibility problems.
Abstract: Due to their extraordinary utility and broad applicability in many areas of classical mathematics and modern physical sciences (most notably, computerized tomography), algorithms for solving convex feasibility problems continue to receive great attention. To unify, generalize, and review some of these algorithms, a very broad and flexible framework is investigated. Several crucial new concepts which allow a systematic discussion of questions on behaviour in general Hilbert spaces and on the quality of convergence are brought out. Numerous examples are given.

1,742 citations

Journal ArticleDOI
TL;DR: In this article, a projection operator onto a closed convex set in Hilbert space is proposed for image restoration from partial data which permits any number of nonlinear constraints of a certain type to be subsumed automatically.
Abstract: A projection operator onto a closed convex set in Hilbert space is one of the few examples of a nonlinear map that can be defined in simple abstract terms. Moreover, it minimizes distance and is nonexpansive, and therefore shares two of the more important properties of ordinary linear orthogonal projections onto closed linear manifolds. In this paper, we exploit the properties of these operators to develop several iterative algorithms for image restoration from partial data which permit any number of nonlinear constraints of a certain type to be subsumed automatically. Their common conceptual basis is as follows. Every known property of an original image f is envisaged as restricting it to lie in a well-defined closed convex set. Thus, m such properties place f in the intersection E0 = Ei of the corresponding closed convex sets E1,E2,···Em. Given only the projection operators Pi onto the individual Ei's, i = 1 → m, we restore f by recursive means. Clearly, in this approach, the realization of the Pi's in a Hilbert space setting is one of the major synthesis problems. Section I describes the geometrical significance of the three main theorems in considerable detail, and most of the underlying ideas are illustrated with the aid of simple diagrams. Section II presents rules for the numerical implementation of 11 specific projection operators which are found to occur frequently in many signal-processing applications, and the Appendix contains proofs of all the major results.

1,116 citations

Journal ArticleDOI
TL;DR: Using an extension of Pierra's product space formalism, it is shown here that a multiprojection algorithm converges and is fully simultaneous, i.e., it uses in each iterative stepall sets of the convex feasibility problem.
Abstract: Generalized distances give rise to generalized projections into convex sets. An important question is whether or not one can use within the same projection algorithm different types of such generalized projections. This question has practical consequences in the area of signal detection and image recovery in situations that can be formulated mathematically as a convex feasibility problem. Using an extension of Pierra's product space formalism, we show here that a multiprojection algorithm converges. Our algorithm is fully simultaneous, i.e., it uses in each iterative stepall sets of the convex feasibility problem. Different multiprojection algorithms can be derived from our algorithmic scheme by a judicious choice of the Bregman functions which govern the process. As a by-product of our investigation we also obtain blockiterative schemes for certain kinds of linearly constraned optimization problems.

1,085 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider the accuracy of projection method approximations to the initial-boundary-value problem for the incompressible Navier-Stokes equations and present an improved projection algorithm which is fully second-order accurate.

841 citations

Journal ArticleDOI
TL;DR: The FSP is utilized to solve two examples taken from the field of systems biology, and comparisons are made between the FSP, the SSA, and tau leaping algorithms.
Abstract: This article introduces the finite state projection (FSP) method for use in the stochastic analysis of chemically reacting systems. One can describe the chemical populations of such systems with probability density vectors that evolve according to a set of linear ordinary differential equations known as the chemical master equation (CME). Unlike Monte Carlo methods such as the stochastic simulation algorithm (SSA) or tau leaping, the FSP directly solves or approximates the solution of the CME. If the CME describes a system that has a finite number of distinct population vectors, the FSP method provides an exact analytical solution. When an infinite or extremely large number of population variations is possible, the state space can be truncated, and the FSP method provides a certificate of accuracy for how closely the truncated space approximation matches the true solution. The proposed FSP algorithm systematically increases the projection space in order to meet prespecified tolerance in the total probability density error. For any system in which a sufficiently accurate FSP exists, the FSP algorithm is shown to converge in a finite number of steps. The FSP is utilized to solve two examples taken from the field of systems biology, and comparisons are made between the FSP, the SSA, and tau leaping algorithms. In both examples, the FSP outperforms the SSA in terms of accuracy as well as computational efficiency. Furthermore, due to very small molecular counts in these particular examples, the FSP also performs far more effectively than tau leaping methods.

796 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
87% related
Nonlinear system
208.1K papers, 4M citations
82% related
Differential equation
88K papers, 2M citations
79% related
Control theory
299.6K papers, 3.1M citations
79% related
Artificial neural network
207K papers, 4.5M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20236
20229
202181
202084
201986
201871