scispace - formally typeset
Search or ask a question
Topic

Dynamic braking

About: Dynamic braking is a research topic. Over the lifetime, 3472 publications have been published within this topic receiving 34897 citations. The topic is also known as: Rheostatic brake.


Papers
More filters
Patent
Syunsuke Tezuka1
27 May 2005
TL;DR: In this article, a detection unit directly detects an operating force acting on a wheel and a computation unit respectively computes a current value of a regenerative braking force and a current values of a friction braking force based on the result of a detection by the detection unit.
Abstract: A detection unit directly detects an operating force acting on a wheel. A computation unit respectively computes a current value of a regenerative braking force and a current value of a friction braking force based on the result of a detection by the detection unit. A setting unit sets a target value of the regenerative braking force and a target value of the friction braking force based on a required braking force. A control unit controls a regenerative braking device based on the current value of the regenerative braking force so that the regenerative braking force approaches to the target value and also controls a friction braking device based on the current value of the friction braking force so that the friction braking force approaches to the target value.

42 citations

Journal ArticleDOI
TL;DR: In this article, a model reference adaptive controller is designed to ensure good vehicle speed tracking performance in brake-by-wire driving scenarios in presence of large payload and road grade variations.
Abstract: Modern heavy-duty vehicles are equipped with compression braking mechanisms that augment their braking capability and reduce wear of the conventional friction brakes. In this paper we consider a heavy-duty vehicle equipped with a continuously variable compression braking mechanism. The variability of the compression braking torque is achieved through controlling a secondary opening of the exhaust valve of the vehicle's turbocharged diesel engine using a variable valve timing actuator A model reference adaptive controller is designed to ensure good vehicle speed tracking performance in brake-by-wire driving scenarios in presence of large payload and road grade variations. The adaptive controller is integrated with backstepping procedure to account for compression braking actuator dynamics, with observers for various unmeasured quantities and with compensation schemes for actuator saturation. In addition to speed tracking, the vehicle mass and road grade are simultaneously estimated if persistence of excitation-type conditions hold. The final version of the controller is successfully evaluated on a high order crank angle model of a vehicle with a six-cylinder engine.

42 citations

Journal ArticleDOI
C Jo1, J Ko1, H Yeo2, T Yeo2, Sung-Ho Hwang2, Hyun-Jin Kim1 
01 Apr 2012
TL;DR: In this paper, a cooperative regenerative braking control algorithm is proposed for a six-speed automatic-transmission-based parallel hybrid electric vehicle (HEV) during a downshift that satisfies the requirements for braking force and driving comfort.
Abstract: A cooperative regenerative braking control algorithm is proposed for a six-speed automatic-transmission-based parallel hybrid electric vehicle (HEV) during a downshift that satisfies the requirements for braking force and driving comfort. First, a downshift strategy during braking is suggested by considering the re-acceleration performance. To maintain driving comfort, a cooperative regenerative braking control algorithm is developed that considers the response characteristics of the electrohydraulic brake. Using the electrohydraulic brake’s hardware and an HEV simulator, a hardware-in-the-loop simulation (HILS) is performed. From the HILS results, it is found that the proposed cooperative regenerative braking control algorithm satisfies the demanded braking force and driving comfort during the downshift with regenerative braking.

42 citations

Patent
13 Mar 2000
TL;DR: In this article, a dynamic braking circuit was proposed to prevent a voltage change dv/dt of an inverter from directly causing an erroneous firing of a semiconductor brake switch, which may short-circuit the inverter during operation.
Abstract: The invention prevents a voltage change dv/dt of an inverter from directly causing an erroneous firing of a semiconductor brake switch, which may short-circuit the inverter during operation. To brake a motor (10) driven by an inverter which consists of a three-phase AC power supply (1), a three-phase bridge rectifier (3), a smoothing capacitor (6) and a semiconductor switching element (7), a dynamic braking circuit turns on a semiconductor braking switch (14) to short-circuit feeder lines (11) for the motor (10) so that a braking resistor (15) may absorb energy. A large resistor (20) is connected between the positive side of the smoothing capacitor (6) and the positive side of the semiconductor braking switch (14), and a snubber capacitor (17) of a snubber circuit (18) connected in parallel with the semiconductor braking switch (14) is charged through the resistor (20) before the inverter is started.

42 citations

Journal ArticleDOI
TL;DR: In this article, a modular observer is proposed to estimate the vehicle longitudinal velocity, and input-to-state stability theory is utilized to prove that the estimation error converges to zero.

42 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
79% related
Control system
129K papers, 1.5M citations
79% related
Adaptive control
60.1K papers, 1.2M citations
76% related
Robustness (computer science)
94.7K papers, 1.6M citations
73% related
Electric power system
133K papers, 1.7M citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202376
2022156
20216
202018
201925
201834