Topic
Dynamic loading
About: Dynamic loading is a research topic. Over the lifetime, 2531 publications have been published within this topic receiving 35592 citations. The topic is also known as: Dynamic loading.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: In this paper, the method is capable of application to structures of any degree of complication, with any relationship between force and displacement, from linear elastic behavior through various degrees of inelastic behavior or plastic response, up to failure; any type of dynamic loading, due to shock or impact, vibration, earthquake, or nuclear blast can be considered.
Abstract: Method is capable of application to structures of any degree of complication, with any relationship between force and displacement, from linear elastic behavior through various degrees of inelastic behavior or plastic response, up to failure; any type of dynamic loading, due to shock or impact, vibration, earthquake, or nuclear blast can be considered; use of high-speed digital computers.
3,739 citations
[...]
TL;DR: A review of the development and the state of the art in dynamic testing techniques and dynamic mechanical behaviour of rock materials can be found in this article, where a detailed description of various dynamic mechanical properties (e.g., uniaxial and triaxial compressive strength, tensile strength, shear strength and fracture toughness) and corresponding fracture behaviour are discussed.
Abstract: The purpose of this review is to discuss the development and the state of the art in dynamic testing techniques and dynamic mechanical behaviour of rock materials. The review begins by briefly introducing the history of rock dynamics and explaining the significance of studying these issues. Loading techniques commonly used for both intermediate and high strain rate tests and measurement techniques for dynamic stress and deformation are critically assessed in Sects. 2 and 3. In Sect. 4, methods of dynamic testing and estimation to obtain stress–strain curves at high strain rate are summarized, followed by an in-depth description of various dynamic mechanical properties (e.g. uniaxial and triaxial compressive strength, tensile strength, shear strength and fracture toughness) and corresponding fracture behaviour. Some influencing rock structural features (i.e. microstructure, size and shape) and testing conditions (i.e. confining pressure, temperature and water saturation) are considered, ending with some popular semi-empirical rate-dependent equations for the enhancement of dynamic mechanical properties. Section 5 discusses physical mechanisms of strain rate effects. Section 6 describes phenomenological and mechanically based rate-dependent constitutive models established from the knowledge of the stress–strain behaviour and physical mechanisms. Section 7 presents dynamic fracture criteria for quasi-brittle materials. Finally, a brief summary and some aspects of prospective research are presented.
549 citations
[...]
TL;DR: In this paper, a simple shock model based upon a rate-independent, rigid, perfectly-plastic, locking (r-p-p l) idealisation of the stress-strain curves for wood is proposed to provide a first order understanding of the dynamic response.
Abstract: Experimental results are provided from a series of tests on the uniaxial dynamic crushing of cylindrical specimens of five species of wood selected for the density range they cover and tested up to impact velocities of approximately 300 ms−1. An account of the macro-deformation and micro-deformation modes resulting from quasi-static and dynamic uniaxial compression is given. Measurements of the force pulses generated by the impact of the wood specimens on the end of a Hopkinson bar load cell show that significant enhancements of the initial crushing strengths of the specimens occur under dynamic loading conditions. The deformation mechanisms of wood are localised under quasi-static compression and under dynamic loading conditions they become even more localised and propagate through the material as crushing wave fronts which have some of the characteristics of shock waves. A simple shock model based upon a rate-independent, rigid, perfectly-plastic, locking (r-p-p-l) idealisation of the stress-strain curves for wood is proposed to provide a first order understanding of the dynamic response. This model is particularly successful in predicting the dynamic enhancement of the crushing strength of specimens loaded across the grain as confirmed by comparisons between the experimental data and theoretical results. It is less successful for those compressed along the grain. The source of the discrepancy is discussed and explanations are provided for the fairly constant crushing stress enhancement factor observed at low to moderate impact velocities, for the high impact velocity at which shock-type response is initiated and for the existence of clearly delineated crush fronts which characterise these specimens.
467 citations
[...]
TL;DR: In this article, the authors present a comprehensive source of reported literature involving dynamic mechanical properties of natural fiber reinforced polymer composites, hybrid and nano composites and its applications and provide a perfect data to explore its industrial application primarily as cheaper construction and building materials for doing further research in this topic.
Abstract: Dynamic mechanical analysis (DMA) is a versatile technique that complements the information provided by the more traditional thermal analysis techniques such as differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and thermal mechanical analysis (TMA). The dynamic parameters such as storage modulus (E′), loss modulus (E″), and damping factor (Tan δ) are temperature dependent and provide information about interfacial bonding between the reinforced fibre and polymer matrix of composite material. The dynamic parameters were ominously influenced by the increase in fibre length and loading but not in a geometric progression. Dynamic loading conditions are frequently stumble in civil infrastructure systems due to sound, winds, earthquakes, ocean waves and live loads. Vibration damping parameters shows prime importance for structural applications in order to enhance the reliability, performance, buildings comfort and in the alleviation of bridges hazards. DMA also predicts the effects of time and temperature on polymer sealants viscoelastic performance under different environments. Present review article designed to be a comprehensive source of reported literature involving dynamic mechanical properties of natural fibre reinforced polymer composites, hybrid and nano composites and its applications. This review article will provides a perfect data to explore its industrial application primarily as cheaper construction and building materials for doing further research in this topic.
464 citations
Book•
[...]
01 Jan 1985
TL;DR: In this paper, structural analysis of a single-degree-of-freedom system undamped single degree of freedom system response to haarmonic loading response to general dynamic loading Fourier analysis and response in the frequency domain generalized coordinates and Rayleigh's method nonlinear structural response response spectra.
Abstract: Part I: structures modelled as a single degree-of-freedom system undamped single degree-of-freedom system damped single degree-of-freedom system response of one-degree-of-freedom system to haarmonic loading response to general dynamic loading Fourier analysis and response in the frequency domain generalized co-ordinates and Rayleigh's method nonlinear structural response response spectra. Part II: structures modelled as shear buildings the multistory shear building free vibration of a shear building forced motion of shear buildings damped motion of shear buildings reduction of dynamic matrices. Part III: framed structures modeled as discrete multidegree-of-freedom systems dynamic analysis of beams dynamic analysis of plane frames dynamic anaylsis of grids three-dimensional frames dynamic analysis of trusses time history response of multidegree-of-freedom systems. Part IV: structures modelled with distributed properties dynamic analysis of systems with distributed properties discretization of continuous systems. Part V: introduction to finite element method dynamic analysis of plates dynamic analysis of shells dynamic analysis of three-dimensional solid structures. Part VI: random vibration. Part VII: earthquake engineering equivolent staic lateral force method - uniform Building Code 1994 dynamic method - uniform Building Code - 1994.
460 citations