scispace - formally typeset
Search or ask a question
Topic

Dynamic Monte Carlo method

About: Dynamic Monte Carlo method is a research topic. Over the lifetime, 13294 publications have been published within this topic receiving 371256 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors presented an introduction to Monte Carlo methods for integration problems, including convergence theory, sampling methods and variance reduction techniques, and showed Monte Carlo to be very robust but also slow.
Abstract: Monte Carlo is one of the most versatile and widely used numerical methods. Its convergence rate, O(N−1/2), is independent of dimension, which shows Monte Carlo to be very robust but also slow. This article presents an introduction to Monte Carlo methods for integration problems, including convergence theory, sampling methods and variance reduction techniques. Accelerated convergence for Monte Carlo quadrature is attained using quasi-random (also called low-discrepancy) sequences, which are a deterministic alternative to random or pseudo-random sequences. The points in a quasi-random sequence are correlated to provide greater uniformity. The resulting quadrature method, called quasi-Monte Carlo, has a convergence rate of approximately O((logN)kN−1). For quasi-Monte Carlo, both theoretical error estimates and practical limitations are presented. Although the emphasis in this article is on integration, Monte Carlo simulation of rarefied gas dynamics is also discussed. In the limit of small mean free path (that is, the fluid dynamic limit), Monte Carlo loses its effectiveness because the collisional distance is much less than the fluid dynamic length scale. Computational examples are presented throughout the text to illustrate the theory. A number of open problems are described.

1,708 citations

01 Jan 2009
TL;DR: The PENELOPE as mentioned in this paper computer code system performs Monte Carlo simulation of coupled electron-photon transport in arbitrary materials for a wide energy range, from a few hundred eV to about 1 GeV.
Abstract: The computer code system PENELOPE (version 2008) performs Monte Carlo simulation of coupled electron-photon transport in arbitrary materials for a wide energy range, from a few hundred eV to about 1 GeV. Photon transport is simulated by means of the standard, detailed simulation scheme. Electron and positron histories are generated on the basis of a mixed procedure, which combines detailed simulation of hard events with condensed simulation of soft interactions. A geometry package called PENGEOM permits the generation of random electron-photon showers in material systems consisting of homogeneous bodies limited by quadric surfaces, i.e., planes, spheres, cylinders, etc. This report is intended not only to serve as a manual of the PENELOPE code system, but also to provide the user with the necessary information to understand the details of the Monte Carlo algorithm.

1,675 citations

Journal ArticleDOI
TL;DR: It is shown that multigrid ideas can be used to reduce the computational complexity of estimating an expected value arising from a stochastic differential equation using Monte Carlo path simulations.
Abstract: We show that multigrid ideas can be used to reduce the computational complexity of estimating an expected value arising from a stochastic differential equation using Monte Carlo path simulations. In the simplest case of a Lipschitz payoff and a Euler discretisation, the computational cost to achieve an accuracy of O(e) is reduced from O(e-3) to O(e-2 (log e)2). The analysis is supported by numerical results showing significant computational savings.

1,619 citations

Journal ArticleDOI
TL;DR: In this paper, a new technique based on the standard Monte Carlo simulation method with Markov chain sampling is developed, in which a set of three dimensional particle configurations are generated that are consistent with the experimentally measured structure factor.
Abstract: We have developed a new technique, based on the standard Monte Carlo simulation method with Markov chain sampling, in which a set of three dimensional particle configurations are generated that are consistent with the experimentally measured structure factor. A(Q), and radial distribution function, g(r), of a liquid or other disordered system. Consistency is determined by a standard χ2 test using the experimental errors. No input potential is required, we present initial results for liquid argon. Since the technique can work directly from the structure factor it promises to be useful for modelling the structures of glasses or amorphous materials. It also has other advantages in multicomponent systems and as a tool for experimental data analysis.

1,394 citations

01 Jan 1991
TL;DR: Markov chain Monte Carlo (MCMC) as discussed by the authors is a general tool for simulation of complex stochastic processes useful in many types of statistical inference, including maximum likelihood estimation and maximum pseudo likelihood estimation.
Abstract: Markov chain Monte Carlo (e. g., the Metropolis algorithm and Gibbs sampler) is a general tool for simulation of complex stochastic processes useful in many types of statistical inference. The basics of Markov chain Monte Carlo are reviewed, including choice of algorithms and variance estimation, and some new methods are introduced. The use of Markov chain Monte Carlo for maximum likelihood estimation is explained, and its performance is compared with maximum pseudo likelihood estimation.

1,242 citations


Network Information
Related Topics (5)
Monte Carlo method
95.9K papers, 2.1M citations
91% related
Electron
111.1K papers, 2.1M citations
82% related
Excited state
102.2K papers, 2.2M citations
81% related
Ab initio
57.3K papers, 1.6M citations
81% related
Scattering
152.3K papers, 3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202311
202233
20201
20198
201852
2017306