scispace - formally typeset
Search or ask a question
Topic

Dynamic Monte Carlo method

About: Dynamic Monte Carlo method is a research topic. Over the lifetime, 13294 publications have been published within this topic receiving 371256 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A particle-based Monte Carlo formalism for the study of polymeric melts, where the interaction energy is given by a local density functional, as is done in traditional field-theoretic models, is introduced.
Abstract: We introduce a particle-based Monte Carlo formalism for the study of polymeric melts, where the interaction energy is given by a local density functional, as is done in traditional field-theoretic models. The method enables Monte Carlo simulations in arbitrary ensembles and direct calculation of free energies. We present results for the phase diagram and the critical point of a binary homopolymer blend. For a symmetric diblock copolymer, we compute the distribution of local stress in lamellae and locate the order-disorder transition.

134 citations

Journal ArticleDOI
TL;DR: In this paper, the theoretical stopping powers for elementary excitation processes (conduction-electron, plasmon and L-shell electron excitations) were used instead of Bethe's stopping power equation to describe the energy loss process in the electron penetration.
Abstract: A new Monte Carlo approach to the direct simulation of scattering process of a penetrating electron in matter has been attempted. The theoretical stopping powers for elementary excitation processes (conduction-electron, plasmon and L-shell electron excitations) were used instead of Bethe's stopping power equation to describe the energy loss process in the electron penetration. The result obtained for aluminium describes the energy as well as the angular distribution of the transmitted electrons satisfactorily. This approach has also been applied to copper as a preliminary example. The theory describes qualitatively the energy and angular distributions of the transmitted electrons fairly well, but there is some discrepancy between theory and experiment in the energy distribution.

134 citations

Journal ArticleDOI
TL;DR: The first numerical determination of the thermodynamic isotropic-nematic transition in a simple three-dimensional model fluid, viz., a system of infinitely thin hard platelets, is reported in this article.
Abstract: The first numerical determination of the thermodynamic isotropic-nematic transition in a simple three-dimensional model fluid, viz., a system of infinitely thin hard platelets, is reported. Thermodynamic properties were studied with use of the constant-pressure Monte Carlo method; Widom's particle-insertion method was used to measure the chemical potential. The phase diagram is found to differ considerably from predictions of a second-virial ("Onsager") theory. Virial coefficients up to the fifth were computed; b5 is found to be negative.

133 citations

Journal ArticleDOI
TL;DR: In this article, a method to treat low-energy scattering problems in few-nucleon systems was described, and applied to the five-body case of neutron-alpha scattering.
Abstract: We describe a new method to treat low-energy scattering problems in few-nucleon systems, and we apply it to the five-body case of neutron-alpha scattering. The method allows precise calculations of low-lying resonances and their widths. We find that a good three-nucleon interaction is crucial to obtain an accurate description of neutron-alpha scattering.

133 citations

Journal ArticleDOI
TL;DR: In this paper, an exact, computer-oriented Monte Carlo procedure is derived for numerically simulating continuous-time/discrete-state random walks in which the transition probability per unit time from state Sm to state Sn may depend upon the residence time τ in the state Sm. Conditions for applicational feasibility of the simulation procedure are briefly indicated, and explicit stepping algorithms for simple τ-dependencies are obtained.

133 citations


Network Information
Related Topics (5)
Monte Carlo method
95.9K papers, 2.1M citations
91% related
Electron
111.1K papers, 2.1M citations
82% related
Excited state
102.2K papers, 2.2M citations
81% related
Ab initio
57.3K papers, 1.6M citations
81% related
Scattering
152.3K papers, 3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202311
202233
20201
20198
201852
2017306