scispace - formally typeset
Search or ask a question
Topic

Dynamic pricing

About: Dynamic pricing is a research topic. Over the lifetime, 4144 publications have been published within this topic receiving 91390 citations. The topic is also known as: surge pricing & demand pricing.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors explored the market potential of a fleet of shared autonomous electric vehicles (SAEVs) by using a multinomial logit mode choice model in an agent-based framework and different fare settings.
Abstract: The market potential of a fleet of shared autonomous electric vehicles (SAEVs) is explored by using a multinomial logit mode choice model in an agent-based framework and different fare settings. The mode share of SAEVs in the simulated midsize city (modeled roughly after Austin, Texas) is predicted to lie between 14% and 39% when the SAEVs compete with privately owned, manually driven vehicles and city bus service. The underlying assumptions are that SAEVs are priced between $0.75/mi and $1.00/mi, which delivers significant net revenues to the fleet owner–operator under all modeled scenarios; that they have an 80-mi range and that Level 2 charging infrastructure is available; and that automation costs are up to $25,000 per vehicle. Various dynamic pricing schemes for SAEV fares indicate that specific fleet metrics can be improved with targeted strategies. For example, pricing strategies that attempt to balance available SAEV supply with anticipated trip demand can decrease average wait times by 19% to 23%...

170 citations

Journal ArticleDOI
TL;DR: A queueing-theoretic economic model is built that lets platforms realize the benefits of optimal static pricing, even with imperfect knowledge of system parameters, and shows that dynamic pricing is much more robust to fluctuations in system parameters compared to static pricing.
Abstract: We study optimal pricing strategies for ride-sharing platforms, such as Lyft, Sidecar, and Uber. Analysis of pricing in such settings is complex: On one hand these platforms are two-sided -- this requires economic models that capture the incentives of both drivers and passengers. On the other hand, these platforms support high temporal-resolution for data collection and pricing -- this requires stochastic models that capture the dynamics of drivers and passengers in the system.In this paper we build a queueing-theoretic economic model to study optimal platform pricing. In particular, we focus our attention on the value of dynamic pricing: where prices can react to instantaneous imbalances between available supply and incoming demand. We find two main results: We first show that performance (throughput and revenue) under any dynamic pricing strategy cannot exceed that under the optimal static pricing policy (i.e., one which is agnostic of stochastic fluctuations in the system load). This result belies the prevalence of dynamic pricing in practice. Our second result explains the apparent paradox: we show that dynamic pricing is much more robust to fluctuations in system parameters compared to static pricing. Thus dynamic pricing does not necessarily yield higher performance than static pricing -- however, it lets platforms realize the benefits of optimal static pricing, even with imperfect knowledge of system parameters.

168 citations

Journal ArticleDOI
09 Mar 2016
TL;DR: A distributed, massively parallel architecture that enables tractable transmission and distribution locational marginal price (T&DLMP) discovery along with optimal scheduling of centralized generation, decentralized conventional and flexible loads, and distributed energy resources (DERs).
Abstract: Marginal-cost-based dynamic pricing of electricity services, including real power, reactive power, and reserves, may provide unprecedented efficiencies and system synergies that are pivotal to the sustainability of massive renewable generation integration. Extension of wholesale high-voltage power markets to allow distribution network connected prosumers to participate, albeit desirable, has stalled on high transaction costs and the lack of a tractable market clearing framework. This paper presents a distributed, massively parallel architecture that enables tractable transmission and distribution locational marginal price (TD electric vehicle (EV) battery charging and storage; heating, ventilating, and air conditioning (HVAC) and combined heat & power (CHP) microgenerators; computing; volt/var control devices; grid-friendly appliances; smart transformers; and more. The proposed iterative distributed architecture can discover T&DLMPs while capturing the full complexity of each participating DER’s intertemporal preferences and physical system dynamics.

167 citations

Posted Content
TL;DR: This work considers a dynamic pricing problem facing a firm that sells given initial inventories of multiple substitutable and perishable products over a finite selling horizon, and develops a polynomial-time, exact algorithm for determining the optimal prices and the profit.
Abstract: In response to competitive pressures, firms are increasingly adopting revenue management opportunities afforded by advances in information and communication technologies. Motivated by these revenue management initiatives in industry, we consider a dynamic pricing problem facing a firm that sells given initial inventories of multiple substitutable and perishable products over a finite selling horizon. Because the products are substitutable, individual product demands are linked through consumer choice processes. Hence, the seller must formulate a joint dynamic pricing strategy while explicitly incorporating consumer behavior. For an integrative model of consumer choice based on linear random consumer utilities, we model this multiproduct dynamic pricing problem as a stochastic dynamic program and analyze its optimal prices. The consumer choice model allows us to capture the linkage between product differentiation and consumer choice, and readily specializes to the cases of verticallyand horizontallydif ferentiated assortments. When products are vertically differentiated, our results show monotonicity properties (with respect to quality, inventory, and time) of the optimal prices and reveal that the optimal price of a product depends on higher qualitypr oduct inventories only through their aggregate inventory rather than individual availabilities. Furthermore, we show that the price of a product can be decomposed into the price of its adjacent lower qualitypr oduct and a markup over this price, with the markup depending solely on the aggregate inventory. We exploit these properties to develop a polynomial-time, exact algorithm for determining the optimal prices and the profit. For a horizontally differentiated assortment, we show that the profit function is unimodal in prices. We also show that individual, rather than aggregate, product inventory availability drives pricing. However, we find that monotonicity properties observed in vertically differentiated assortments do not hold.

166 citations

Proceedings ArticleDOI
04 Nov 2010
TL;DR: In this article, a mathematical model is developed for characterization of the dynamic evolution of supply, demand, and market clearing (locational marginal) prices under real-time pricing, with price stability as the primary concern.
Abstract: The paper proposes a mechanism for real-time pricing of electricity in smart power grids, with price stability as the primary concern. In previous publications the authors argued that relaying the real-time wholesale market prices to the end consumers creates a closed loop feedback system which could be unstable or lack robustness, leading to extreme price volatility. In this paper, a mathematical model is developed for characterization of the dynamic evolution of supply, (elastic) demand, and market clearing (locational marginal) prices under real-time pricing. It is assumed that the real-time prices for retail consumers are derived from the Locational Marginal Prices (LMPs) of the wholesale balancing markets. The main contribution of the paper is in presenting an effective stabilizing pricing algorithm and characterization of its effects on system efficiency. Numerical simulations conform with our analysis and show the stabilizing effect of the mechanism and its robustness to disturbances.

165 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
82% related
Supply chain
84.1K papers, 1.7M citations
80% related
Energy consumption
101.9K papers, 1.6M citations
79% related
Empirical research
51.3K papers, 1.9M citations
77% related
Robustness (computer science)
94.7K papers, 1.6M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023140
2022262
2021307
2020324
2019346
2018314