scispace - formally typeset
Search or ask a question
Topic

Dynamic range

About: Dynamic range is a research topic. Over the lifetime, 7576 publications have been published within this topic receiving 101739 citations. The topic is also known as: DNR & DR.


Papers
More filters
Patent
18 Oct 2001
TL;DR: An image sensor for capturing and producing an image includes a photoreceptor array that receives light and produces a signal for each pixel of the image as discussed by the authors, and the image sensor further includes amplification circuitry that amplifies the signals.
Abstract: An image sensor for capturing and producing an image includes a photoreceptor array that receives light and produces a signal for each pixel of the image. The image sensor further includes amplification circuitry that amplifies the signals. The amplification circuitry provides two distinct gains for each of the signals to produce two output signal levels. The image sensor also includes a fusion module, which combines the two output signal levels into one signal level. Accordingly, overall dynamic range of the image sensor is increased.

91 citations

Journal ArticleDOI
TL;DR: A 0.6-V 2-2 cascaded audio delta-sigma ADC using a resistor-based sampling technique which achieves high linearity and low-voltage operation without subjecting the devices to large terminal voltages is described.
Abstract: A 0.6-V 2-2 cascaded audio delta-sigma ADC is described. It uses a resistor-based sampling technique which achieves high linearity and low-voltage operation without subjecting the devices to large terminal voltages. A low-distortion feed-forward topology combined with nonlinear local feedback results in enhanced linearity by reducing the sensitivity to opamp distortion, and allows increased input amplitude, resulting in higher SNDR. The modulator achieves 82-dB dynamic range and 81-dB peak SNDR in the A-weighted audio signal bandwidth with an OSR of 64. The total power consumption of the modulator is 1 mW from a 0.6-V supply. The prototype occupies 2.9 mm/sup 2/ using a 0.35-/spl mu/m CMOS technology.

91 citations

Patent
23 Apr 1997
TL;DR: In this paper, a charge coupled device (CCD) camera includes a CCD imager circuit, a compression engine, and a control circuit coupled to both the CCD Imager circuit and the compression engine.
Abstract: A charge coupled device (CCD) camera includes a CCD imager circuit, a compression engine, and a control circuit coupled to both the CCD imager circuit and the compression engine. The CCD imager circuit is characterized by an integration time defined by clock pulses from the control circuit. The compression engine generates successive frame requests. The control circuit generates the clock pulses to define the integration time based on a time between the sucessive frame requests. The camera further includes a histogram accumulator and an automatic gain controlled (AGC) amplifier coupled between the CCD imager circuit and the histogram accumulator. The CCD imager circuit is characterized by a predetermined maximum imager dynamic range and generates successive frames of imager data values, each successive frame of imager data values being characterized by an imager data value dynamic range and each frame of imager data values being generated based on a corresponding integration time. The AGC amplifier is characterized by an AGC gain defined by a gain control signal and characterized by a maximum output dynamic range. The AGC amplifier processes the successive frames of imager data values into corresponding successive frames of gain controlled data values, each successive frame of gain controlled data values being characterized by a gain controlled data value dynamic range. The histogram accumulator processes a first frame of gain controlled data values to determine a first frame result. The control circuit generates the clock pulses based on the first frame results to define the integration time that corresponds to a second frame of imager data values so that the integration time is maximized while the imager data value dynamic range is less than the maximum imager dynamic range, and the control circuit further generates the gain control signal based on the first frame results and the maximum imager dynamic range to minimize the AGC gain required so that the gain controlled data value dynamic range is equal to a predetermined range within the maximum output dynamic range.

90 citations

Journal ArticleDOI
TL;DR: It is shown that electronic subtraction is nearly as effective as field superposition in measuring differential vibrations, and is of interest in the study of friction induced vibration damping of gas turbine blades for aircraft applications.
Abstract: An instrument for noncontact measurement of differential vibrations is developed, based on the self-mixing interferometer. As no reference arm is available in the self-mixing configuration, the differential mode is obtained by electronic subtraction of signals from two (nominally equal) vibrometer channels, taking advantage that channels are servo stabilized and thus insensitive to speckle and other sources of amplitude fluctuation. We show that electronic subtraction is nearly as effective as field superposition. Common-mode suppression is 25-30 dB, the dynamic range (amplitude) is in excess of 100 μm, and the minimum measurable (differential) amplitude is 20 nm on a B=10 kHz bandwidth. The instrument has been used to measure vibrations of two metal samples kept in contact, revealing the hysteresis cycle in the microslip and gross-slip regimes, which are of interest in the study of friction induced vibration damping of gas turbine blades for aircraft applications.

90 citations

Journal ArticleDOI
TL;DR: The demonstration of a new 128/spl times/128 CMOS APS with programmable multiresolution readout capability with 80 dB of dynamic range while dissipating only 5 mW of power.
Abstract: The development of the CMOS active pixel sensor (APS) has, for the first time, permitted large scale integration of supporting circuitry and smart camera-functions on the same chip as a high-performance image sensor. This paper reports on the demonstration of a new 128/spl times/128 CMOS APS with programmable multiresolution readout capability. By placing signal processing circuitry on the imaging focal plane, the image sensor can output data at varying resolutions which can decrease the computational load of downstream image processing. For instance, software intensive image pyramid reconstruction can be eliminated. The circuit uses a passive switched capacitor network to average arbitrarily large neighborhoods of pixels which can then be read out at any user-defined resolution by configuring a set of digital shift registers. The full resolution frame rate is 30 Hz with higher rates for all other image resolutions. The sensor achieved 80 dB of dynamic range while dissipating only 5 mW of power. Circuit error was less than -34 dB and introduced no objectionable fixed pattern noise or other artifacts into the image.

89 citations


Network Information
Related Topics (5)
Amplifier
163.9K papers, 1.3M citations
91% related
Detector
146.5K papers, 1.3M citations
85% related
Optical fiber
167K papers, 1.8M citations
83% related
Transistor
138K papers, 1.4M citations
82% related
Pixel
136.5K papers, 1.5M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023176
2022383
2021189
2020265
2019325
2018334