scispace - formally typeset
Search or ask a question
Topic

Dynamic range

About: Dynamic range is a research topic. Over the lifetime, 7576 publications have been published within this topic receiving 101739 citations. The topic is also known as: DNR & DR.


Papers
More filters
Patent
22 Jun 2001
TL;DR: In this article, a simple Larmor oscillator is used for gain selection without repeated calibration steps, which can be used for fast imaging techniques such as fast spin echo, where the invention can speed imaging substantially.
Abstract: A receiver for a resonance signal of a magnetic resonance imaging system generates a baseband signal for image processing by dividing a raw resonance signal among multiple parallel channels, each amplified at a respective gain. A digital channel selector determines, at any given moment, a lowest-distortion channel to be further processed. Amplitude and phase error compensation are handled digitally using complex multipliers, which are derived by a calibration, based on a simple Larmor oscillator, which can be done without the need for a sample and without repeating when measurement conditions are changed. One of the important benefits of the invention is that it provides for gain selection without repeated calibration steps. This is particularly important in systems that employ fast imaging techniques such as fast spin echo, where the invention can speed imaging substantially.

80 citations

Proceedings ArticleDOI
19 Mar 2015
TL;DR: A TDC architecture is presented which combines the two step iterated TCSPC process of time-code generation, followed by memory lookup, increment and write, into one parallel direct-to-histogram conversion.
Abstract: Time-correlated single photon counting (TCSPC) is a photon-efficient technique to record ultra-fast optical waveforms found in numerous applications such as time-of-flight (ToF) range measurement (LIDAR) [1], ToF 3D imaging [2], scanning optical microscopy [3], diffuse optical tomography (DOT) and Raman sensing [4]. Typical instrumentation consists of a pulsed laser source, a discrete detector such as an avalanche photodiode (APD) or photomultiplier tube (PMT), time-to-digital converter (TDC) card and a FPGA or PC to assemble and compute histograms of photon time stamps. Cost and size restrict the number of channels of TCSPC hardware. Having few detection and conversion channels, the technique is limited to processing optical waveforms with low intensity, with less than one returned photon per laser pulse, to avoid pile-up distortion [4]. However, many ultra-fast optical waveforms exhibit high dynamic range in the number of photons emitted per laser pulse. Examples are signals observed at close range in ToF with multiple reflections, diffuse reflected photons in DOT or local variations in fluorescent dye concentration in microscopy. This paper provides a single integrated chip that reduces conventional TCSPC pile-up mechanisms by an order of magnitude through ultra-parallel realizations of both photon detection and time-resolving hardware. A TDC architecture is presented which combines the two step iterated TCSPC process of time-code generation, followed by memory lookup, increment and write, into one parallel direct-to-histogram conversion. The sensor achieves 71.4ps resolution, over 18.85ns dynamic range, with 14GS/s throughput. The sensor can process 1.7Gphoton/s and generate 21k histograms/s (with 4.6μs readout time), each capturing a total of 1.7kphotons in a 1μs exposure.

79 citations

Journal ArticleDOI
TL;DR: Oversampling and digital filtering have been used to design a per-channel voiceband codec with resolution that exceeds the typical transmission system requirement by more than 15 dB and the response of the codec is described mathematically and the results are confirmed by measurements of experimental breadboard models.
Abstract: Oversampling and digital filtering have been used to design a per-channel voiceband codec with resolution that exceeds the typical transmission system requirement by more than 15 dB. This extended dynamic range will allow for the use of digital processing in the management of signal levels and system characteristics in many telecommunication applications. Digital filtering contained in the codec provides rejection of out-of-band inputs and smoothing of the analog output that is sufficient to eliminate the need for analog filtering in most telephone applications. Some analog filtering may be required only to maintain the expanded dynamic range in cases where there is a danger of large amounts of out-of-band energy on the analog input impairing the dynamic range of the modulator. The encoder portion of the oversampled codec comprises an interpolating modulator that samples at 256 kHz followed by digital filtering that produces a 16-bit PCM code at a sample rate of 8 kHz. In the decoder, digital processing is used to raise the sampling rate to 1 MHz prior to demodulation in a 17-level interpolating demodulator. The circuits in the codec are designed to be suitable for large-scale integration. Component matching tolerances required in the analog circuits are of the order of only ± 1 percent, While the digital circuits can be implemented with fewer than 5000 gates with delays on the order of 0.1 μs. In this paper the response of the codec is described mathematically and the results are confirmed by measurements of experimental breadboard models.

79 citations

Journal ArticleDOI
TL;DR: In this article, a high-speed optical sampling system for electrical signals has been developed using a gain-switched diode laser and a dual-output Mach-Zehnder interferometer.
Abstract: A high-speed optical sampling system for electrical signals has been developed using a gain-switched diode laser and a dual-output Mach-Zehnder interferometer. The optical phase shift between the branches of the interferometer is highly linear in the applied electrical signal. The phase shift is encoded in the two outputs of the interferometer and is recovered through digital signal processing. Analog-to-digital (A/D) conversion with 78-dB spur-free dynamic range is demonstrated. Our phase-encoded sampling technique allows high-resolution (12-bit) conversion with high linearity at practical laser power levels.

79 citations

Journal ArticleDOI
TL;DR: In this paper, a quasi-digital angular rate sensor based on mechanical frequency modulation (FM) of the input rotation rate is presented, which is enabled by a combination of a MEMS vibratory high-Q gyroscope and a new signal processing scheme which takes advantage of a previously ignored gyroometer dynamic effect.
Abstract: We report, for the first time, an angular rate sensor based on mechanical frequency modulation (FM) of the input rotation rate. This approach tracks the resonant frequency split between two X - Y symmetric high-Q mechanical modes of vibration in a microelectromechanical systems Coriolis vibratory gyroscope to produce a frequency-based measurement of the input angular rate. The system is enabled by a combination of a MEMS vibratory high-Q gyroscope and a new signal processing scheme which takes advantage of a previously ignored gyroscope dynamic effect. A real-time implementation of the quasi-digital angular rate sensor was realized using two digital phase-locked loops and experimentally verified using a silicon MEMS quadruple mass gyroscope (QMG). Structural characterization of a vacuum- packaged QMG showed Q factors on the order of one million over a wide temperature range from -40 °C to +100°C with a relative x/y mismatch of Q of 1 %. Temperature characterization of the FM rate sensor exhibited less than 0.2% variation of the angular rate response between 25°C and 70 °C environments, enabled by the self-calibrating differential frequency detection. High-speed rate table characterization of the FM angular rate sensor demonstrated a linear range of 18 000 deg/s (50 r/s, limited by the setup) with a dynamic range of 128 dB. Interchangeable operation of the QMG transducer in conventional amplitude- modulated and new FM regimes provides a 156-dB dynamic range.

79 citations


Network Information
Related Topics (5)
Amplifier
163.9K papers, 1.3M citations
91% related
Detector
146.5K papers, 1.3M citations
85% related
Optical fiber
167K papers, 1.8M citations
83% related
Transistor
138K papers, 1.4M citations
82% related
Pixel
136.5K papers, 1.5M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023176
2022383
2021189
2020265
2019325
2018334