scispace - formally typeset
Topic

Dynamic time warping

About: Dynamic time warping is a(n) research topic. Over the lifetime, 6013 publication(s) have been published within this topic receiving 133130 citation(s).


Papers
More filters
Journal ArticleDOI

[...]

H. Sakoe1, S. Chiba1
TL;DR: This paper reports on an optimum dynamic progxamming (DP) based time-normalization algorithm for spoken word recognition, in which the warping function slope is restricted so as to improve discrimination between words in different categories.
Abstract: This paper reports on an optimum dynamic progxamming (DP) based time-normalization algorithm for spoken word recognition. First, a general principle of time-normalization is given using time-warping function. Then, two time-normalized distance definitions, called symmetric and asymmetric forms, are derived from the principle. These two forms are compared with each other through theoretical discussions and experimental studies. The symmetric form algorithm superiority is established. A new technique, called slope constraint, is successfully introduced, in which the warping function slope is restricted so as to improve discrimination between words in different categories. The effective slope constraint characteristic is qualitatively analyzed, and the optimum slope constraint condition is determined through experiments. The optimized algorithm is then extensively subjected to experimental comparison with various DP-algorithms, previously applied to spoken word recognition by different research groups. The experiment shows that the present algorithm gives no more than about two-thirds errors, even compared to the best conventional algorithm.

5,478 citations

Proceedings Article

[...]

31 Jul 1994
TL;DR: Preliminary experiments with a dynamic programming approach to pattern detection in databases, based on the dynamic time warping technique used in the speech recognition field, are described.
Abstract: Knowledge discovery in databases presents many interesting challenges within the context of providing computer tools for exploring large data archives. Electronic data repositories are growing quickly and contain data from commercial, scientific, and other domains. Much of this data is inherently temporal, such as stock prices or NASA telemetry data. Detecting patterns in such data streams or time series is an important knowledge discovery task. This paper describes some preliminary experiments with a dynamic programming approach to the problem. The pattern detection algorithm is based on the dynamic time warping technique used in the speech recognition field.

2,815 citations

Journal ArticleDOI

[...]

TL;DR: This work introduces a novel technique for the exact indexing of Dynamic time warping and proves its vast superiority over all competing approaches in the largest and most comprehensive set of time series indexing experiments ever undertaken.
Abstract: The problem of indexing time series has attracted much interest. Most algorithms used to index time series utilize the Euclidean distance or some variation thereof. However, it has been forcefully shown that the Euclidean distance is a very brittle distance measure. Dynamic time warping (DTW) is a much more robust distance measure for time series, allowing similar shapes to match even if they are out of phase in the time axis. Because of this flexibility, DTW is widely used in science, medicine, industry and finance. Unfortunately, however, DTW does not obey the triangular inequality and thus has resisted attempts at exact indexing. Instead, many researchers have introduced approximate indexing techniques or abandoned the idea of indexing and concentrated on speeding up sequential searches. In this work, we introduce a novel technique for the exact indexing of DTW. We prove that our method guarantees no false dismissals and we demonstrate its vast superiority over all competing approaches in the largest and most comprehensive set of time series indexing experiments ever undertaken.

1,727 citations

Proceedings ArticleDOI

[...]

26 Feb 2002
TL;DR: This work formalizes non-metric similarity functions based on the longest common subsequence (LCSS), which are very robust to noise and furthermore provide an intuitive notion of similarity between trajectories by giving more weight to similar portions of the sequences.
Abstract: We investigate techniques for analysis and retrieval of object trajectories in two or three dimensional space. Such data usually contain a large amount of noise, that has made previously used metrics fail. Therefore, we formalize non-metric similarity functions based on the longest common subsequence (LCSS), which are very robust to noise and furthermore provide an intuitive notion of similarity between trajectories by giving more weight to similar portions of the sequences. Stretching of sequences in time is allowed, as well as global translation of the sequences in space. Efficient approximate algorithms that compute these similarity measures are also provided. We compare these new methods to the widely used Euclidean and time warping distance functions (for real and synthetic data) and show the superiority of our approach, especially in the strong presence of noise. We prove a weaker version of the triangle inequality and employ it in an indexing structure to answer nearest neighbor queries. Finally, we present experimental results that validate the accuracy and efficiency of our approach.

1,384 citations

Book

[...]

26 Sep 2007
TL;DR: Analysis and Retrieval Techniques for Music Data, SyncPlayer: An Advanced Audio Player, and Relational Features and Adaptive Segmentation.
Abstract: Analysis and Retrieval Techniques for Music Data.- Fundamentals on Music and Audio Data.- Pitch- and Chroma-Based Audio Features.- Dynamic Time Warping.- Music Synchronization.- Audio Matching.- Audio Structure Analysis.- SyncPlayer: An Advanced Audio Player.- Analysis and Retrieval Techniques for Motion Data.- Fundamentals on Motion Capture Data.- DTW-Based Motion Comparison and Retrieval.- Relational Features and Adaptive Segmentation.- Index-Based Motion Retrieval.- Motion Templates.- MT-Based Motion Annotation and Retrieval.

1,320 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
91% related
Convolutional neural network
74.7K papers, 2M citations
87% related
Deep learning
79.8K papers, 2.1M citations
87% related
Image segmentation
79.6K papers, 1.8M citations
86% related
Artificial neural network
207K papers, 4.5M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20226
2021335
2020415
2019419
2018377
2017408