scispace - formally typeset
Search or ask a question
Topic

Dynamic time warping

About: Dynamic time warping is a research topic. Over the lifetime, 6013 publications have been published within this topic receiving 133130 citations.


Papers
More filters
Journal ArticleDOI
06 Mar 2017-Sensors
TL;DR: Three distances and their corresponding computation methods are proposed in this paper and show that the SDTW algorithm can exhibit about 57%, 86%, and 31% better accuracy than the longest common subsequence algorithm (LCSS), and edit distance on real sequence algorithm (EDR) , and DTW, respectively, and that the sensitivity to the noise data is lower than that those algorithms.
Abstract: With the rapid spread of built-in GPS handheld smart devices, the trajectory data from GPS sensors has grown explosively. Trajectory data has spatio-temporal characteristics and rich information. Using trajectory data processing techniques can mine the patterns of human activities and the moving patterns of vehicles in the intelligent transportation systems. A trajectory similarity measure is one of the most important issues in trajectory data mining (clustering, classification, frequent pattern mining, etc.). Unfortunately, the main similarity measure algorithms with the trajectory data have been found to be inaccurate, highly sensitive of sampling methods, and have low robustness for the noise data. To solve the above problems, three distances and their corresponding computation methods are proposed in this paper. The point-segment distance can decrease the sensitivity of the point sampling methods. The prediction distance optimizes the temporal distance with the features of trajectory data. The segment-segment distance introduces the trajectory shape factor into the similarity measurement to improve the accuracy. The three kinds of distance are integrated with the traditional dynamic time warping algorithm (DTW) algorithm to propose a new segment–based dynamic time warping algorithm (SDTW). The experimental results show that the SDTW algorithm can exhibit about 57%, 86%, and 31% better accuracy than the longest common subsequence algorithm (LCSS), and edit distance on real sequence algorithm (EDR) , and DTW, respectively, and that the sensitivity to the noise data is lower than that those algorithms.

34 citations

Journal ArticleDOI
TL;DR: A Kinect microphone array-based method for the voice-based control of humanoid robot exhibitions through speech and speaker recognition, using a support vector machine, a Gaussian mixture model, and dynamic time warping for speaker verification, speaker identification, and speech recognition.

34 citations

01 Jan 2004
TL;DR: The experimental results showed that the proposed method can make great improvement in performance of subsequence matching under time warping, and Naive-Scan, which has been known to show the worst performance, performs much better than LB-Scan as well as ST-Filter in all the cases by employing the proposed methods for CPU processing.

34 citations

Proceedings ArticleDOI
28 Sep 2009
TL;DR: This work proposes two criteria independent of the classification step: Personal Entropy, introduced in previous works and an intra-class variability measure based on Dynamic Time Warping, and introduces the concept of short-term time variability, proposed on MCYT-100, and long- term time variability studied with BIOMET database.
Abstract: In this work, we study different combinations of the five time functions captured by a digitizer in presence or not of time variability. To this end, we propose two criteria independent of the classification step: Personal Entropy, introduced in our previous works and an intra-class variability measure based on Dynamic Time Warping. We confront both criteria to system performance using a Hidden Markov Model (HMM) and Dynamic Time Warping (DTW). Moreover, we introduce the concept of short-term time variability, proposed on MCYT-100, and long-term time variability studied with BIOMET database. Our experiments clarify conflicting results in the literature and confirm some other: pen inclination angles are very unstable in presence or not of time variability; the only combination which is robust to time variability is that containing only coordinates; finally, pen pressure is not recommended in the long-term context, although it may give better results in terms of performance (according to the classifier used) in the short-term context.

34 citations

Proceedings ArticleDOI
20 Aug 2017
TL;DR: This paper proposed an approach to query-by-example search that embeds both the query and database segments according to a neural model, followed by nearest-neighbor search to find the matching segments.
Abstract: Query-by-example search often uses dynamic time warping (DTW) for comparing queries and proposed matching segments. Recent work has shown that comparing speech segments by representing them as fixed-dimensional vectors --- acoustic word embeddings --- and measuring their vector distance (e.g., cosine distance) can discriminate between words more accurately than DTW-based approaches. We consider an approach to query-by-example search that embeds both the query and database segments according to a neural model, followed by nearest-neighbor search to find the matching segments. Earlier work on embedding-based query-by-example, using template-based acoustic word embeddings, achieved competitive performance. We find that our embeddings, based on recurrent neural networks trained to optimize word discrimination, achieve substantial improvements in performance and run-time efficiency over the previous approaches.

34 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
91% related
Convolutional neural network
74.7K papers, 2M citations
87% related
Deep learning
79.8K papers, 2.1M citations
87% related
Image segmentation
79.6K papers, 1.8M citations
86% related
Artificial neural network
207K papers, 4.5M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023236
2022471
2021341
2020416
2019420
2018377