scispace - formally typeset
Search or ask a question
Topic

Dynamic time warping

About: Dynamic time warping is a research topic. Over the lifetime, 6013 publications have been published within this topic receiving 133130 citations.


Papers
More filters
Proceedings ArticleDOI
23 Jun 2014
TL;DR: A new skeletal representation that explicitly models the 3D geometric relationships between various body parts using rotations and translations in 3D space is proposed and outperforms various state-of-the-art skeleton-based human action recognition approaches.
Abstract: Recently introduced cost-effective depth sensors coupled with the real-time skeleton estimation algorithm of Shotton et al. [16] have generated a renewed interest in skeleton-based human action recognition. Most of the existing skeleton-based approaches use either the joint locations or the joint angles to represent a human skeleton. In this paper, we propose a new skeletal representation that explicitly models the 3D geometric relationships between various body parts using rotations and translations in 3D space. Since 3D rigid body motions are members of the special Euclidean group SE(3), the proposed skeletal representation lies in the Lie group SE(3)×…×SE(3), which is a curved manifold. Using the proposed representation, human actions can be modeled as curves in this Lie group. Since classification of curves in this Lie group is not an easy task, we map the action curves from the Lie group to its Lie algebra, which is a vector space. We then perform classification using a combination of dynamic time warping, Fourier temporal pyramid representation and linear SVM. Experimental results on three action datasets show that the proposed representation performs better than many existing skeletal representations. The proposed approach also outperforms various state-of-the-art skeleton-based human action recognition approaches.

1,432 citations

Journal ArticleDOI
01 Oct 2007
TL;DR: This paper introduces FastDTW, an approximation of DTW that has a linear time and space complexity and shows a large improvement in accuracy over existing methods.
Abstract: Dynamic Time Warping (DTW) has a quadratic time and space complexity that limits its use to small time series. In this paper we introduce FastDTW, an approximation of DTW that has a linear time and space complexity. FastDTW uses a multilevel approach that recursively projects a solution from a coarser resolution and refines the projected solution. We prove the linear time and space complexity of FastDTW both theoretically and empirically. We also analyze the accuracy of FastDTW by comparing it to two other types of existing approximate DTW algorithms: constraints (such as Sakoe-Chiba Bands) and abstraction. Our results show a large improvement in accuracy over existing methods.

1,363 citations

Proceedings ArticleDOI
14 Jun 2005
TL;DR: Analysis and comparison of EDR with other popular distance functions, such as Euclidean distance, Dynamic Time Warping (DTW), Edit distance with Real Penalty (ERP), and Longest Common Subsequences, indicate that EDR is more robust than Euclideans distance, DTW and ERP, and it is on average 50% more accurate than LCSS.
Abstract: An important consideration in similarity-based retrieval of moving object trajectories is the definition of a distance function. The existing distance functions are usually sensitive to noise, shifts and scaling of data that commonly occur due to sensor failures, errors in detection techniques, disturbance signals, and different sampling rates. Cleaning data to eliminate these is not always possible. In this paper, we introduce a novel distance function, Edit Distance on Real sequence (EDR) which is robust against these data imperfections. Analysis and comparison of EDR with other popular distance functions, such as Euclidean distance, Dynamic Time Warping (DTW), Edit distance with Real Penalty (ERP), and Longest Common Subsequences (LCSS), indicate that EDR is more robust than Euclidean distance, DTW and ERP, and it is on average 50% more accurate than LCSS. We also develop three pruning techniques to improve the retrieval efficiency of EDR and show that these techniques can be combined effectively in a search, increasing the pruning power significantly. The experimental results confirm the superior efficiency of the combined methods.

1,225 citations

Journal ArticleDOI
TL;DR: In this paper, a set of functions of time obtained from acoustic analysis of a fixed, sentence-long utterance are extracted by means of LPC analysis successively throughout an utterance to form time functions, and frequency response distortions introduced by transmission systems are removed.
Abstract: This paper describes new techniques for automatic speaker verification using telephone speech. The operation of the system is based on a set of functions of time obtained from acoustic analysis of a fixed, sentence-long utterance. Cepstrum coefficients are extracted by means of LPC analysis successively throughout an utterance to form time functions, and frequency response distortions introduced by transmission systems are removed. The time functions are expanded by orthogonal polynomial representations and, after a feature selection procedure, brought into time registration with stored reference functions to calculate the overall distance. This is accomplished by a new time warping method using a dynamic programming technique. A decision is made to accept or reject an identity claim, based on the overall distance. Reference functions and decision thresholds are updated for each customer. Several sets of experimental utterances were used for the evaluation of the system, which include male and female utterances recorded over a conventional telephone connection. Male utterances processed by ADPCM and LPC coding systems were used together with unprocessed utterances. Results of the experiment indicate that verification error rate of one percent or less can be obtained even if the reference and test utterances are subjected to different transmission conditions.

1,187 citations

Proceedings ArticleDOI
17 Jun 1997
TL;DR: Algorithms for coupling and training hidden Markov models (HMMs) to model interacting processes, and demonstrate their superiority to conventional HMMs in a vision task classifying two-handed actions are presented.
Abstract: We present algorithms for coupling and training hidden Markov models (HMMs) to model interacting processes, and demonstrate their superiority to conventional HMMs in a vision task classifying two-handed actions. HMMs are perhaps the most successful framework in perceptual computing for modeling and classifying dynamic behaviors, popular because they offer dynamic time warping, a training algorithm and a clear Bayesian semantics. However the Markovian framework makes strong restrictive assumptions about the system generating the signal-that it is a single process having a small number of states and an extremely limited state memory. The single-process model is often inappropriate for vision (and speech) applications, resulting in low ceilings on model performance. Coupled HMMs provide an efficient way to resolve many of these problems, and offer superior training speeds, model likelihoods, and robustness to initial conditions.

1,181 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
91% related
Convolutional neural network
74.7K papers, 2M citations
87% related
Deep learning
79.8K papers, 2.1M citations
87% related
Image segmentation
79.6K papers, 1.8M citations
86% related
Artificial neural network
207K papers, 4.5M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023236
2022471
2021341
2020416
2019420
2018377