scispace - formally typeset
Search or ask a question
Topic

Dynamic time warping

About: Dynamic time warping is a research topic. Over the lifetime, 6013 publications have been published within this topic receiving 133130 citations.


Papers
More filters
Proceedings ArticleDOI
01 Jul 2017
TL;DR: The Lie group structure is incorporated into a deep network architecture to learn more appropriate Lie group features for 3D action recognition and a logarithm mapping layer is proposed to map the resulting manifold data into a tangent space that facilitates the application of regular output layers for the final classification.
Abstract: In recent years, skeleton-based action recognition has become a popular 3D classification problem. State-of-the-art methods typically first represent each motion sequence as a high-dimensional trajectory on a Lie group with an additional dynamic time warping, and then shallowly learn favorable Lie group features. In this paper we incorporate the Lie group structure into a deep network architecture to learn more appropriate Lie group features for 3D action recognition. Within the network structure, we design rotation mapping layers to transform the input Lie group features into desirable ones, which are aligned better in the temporal domain. To reduce the high feature dimensionality, the architecture is equipped with rotation pooling layers for the elements on the Lie group. Furthermore, we propose a logarithm mapping layer to map the resulting manifold data into a tangent space that facilitates the application of regular output layers for the final classification. Evaluations of the proposed network for standard 3D human action recognition datasets clearly demonstrate its superiority over existing shallow Lie group feature learning methods as well as most conventional deep learning methods.

244 citations

Journal ArticleDOI
TL;DR: This letter shows that its nonlinear distortion behavior is compatible with the use of a spatiotemporal segmentation of the data cube that is formed by a satellite image time series (SITS), and proves that, by taking advantage of the spatial and temporal connectivities, both the performance and the quality of the analysis can be improved.
Abstract: Satellite Image Time Series are becoming increasingly available and will continue to do so in the coming years thanks to the launch of space missions which aim at providing a coverage of the Earth every few days with high spatial resolution. In the case of optical imagery, it will be possible to produce land use and cover change maps with detailed nomenclatures. However, due to meteorological phenomena, such as clouds, these time series will become irregular in terms of temporal sampling, and one will need to compare time series with different lengths. In this paper, we present an approach to image time series analysis which is able to deal with irregularly sampled series and which also allows the comparison of pairs of time series where each element of the pair has a different number of samples. We present the dynamic time warping from a theoretical point of view and illustrate its capabilities with two applications to real-time series.

243 citations

Book ChapterDOI
TL;DR: The dynamic time-warping (DTW) approach is used for matching so that non-linear time normalization may be used to deal with the naturally-occuring changes in walking speed.
Abstract: Human gait is an attractive modality for recognizing people at a distance. In this paper we adopt an appearance-based approach to the problem of gait recognition. The width of the outer contour of the binarized silhouette of a walking person is chosen as the basic image feature. Different gait features are extracted from the width vector such as the dowsampled, smoothed width vectors, the velocity profile etc. and sequences of such temporally ordered feature vectors are used for representing a person's gait. We use the dynamic time-warping (DTW) approach for matching so that non-linear time normalization may be used to deal with the naturally-occuring changes in walking speed. The performance of the proposed method is tested using different gait databases.

242 citations

Proceedings Article
07 Dec 2009
TL;DR: In this article, an extension of canonical correlation analysis (CCA) for spatio-temporal alignment of human motion between two subjects is presented. But the alignment of two or more subjects performing similar activities is a challenging problem due to the large temporal scale difference between human actions as well as the inter/intra subject variability.
Abstract: Alignment of time series is an important problem to solve in many scientific disciplines. In particular, temporal alignment of two or more subjects performing similar activities is a challenging problem due to the large temporal scale difference between human actions as well as the inter/intra subject variability. In this paper we present canonical time warping (CTW), an extension of canonical correlation analysis (CCA) for spatio-temporal alignment of human motion between two subjects. CTW extends previous work on CCA in two ways: (i) it combines CCA with dynamic time warping (DTW), and (ii) it extends CCA by allowing local spatial deformations. We show CTW's effectiveness in three experiments: alignment of synthetic data, alignment of motion capture data of two subjects performing similar actions, and alignment of similar facial expressions made by two people. Our results demonstrate that CTW provides both visually and qualitatively better alignment than state-of-the-art techniques based on DTW.

241 citations

Journal ArticleDOI
TL;DR: This work introduces dynamic time warping to stretch each beat to match a running template and combines it with several other features related to signal quality, including correlation and the percentage of the beat that appeared to be clipped to assess the clinical utility of PPG traces.
Abstract: In this work, we describe a beat-by-beat method for assessing the clinical utility of pulsatile waveforms, primarily recorded from cardiovascular blood volume or pressure changes, concentrating on the photoplethysmogram (PPG). Physiological blood flow is nonstationary, with pulses changing in height, width and morphology due to changes in heart rate, cardiac output, sensor type and hardware or software pre-processing requirements. Moreover, considerable inter-individual and sensor-location variability exists. Simple template matching methods are therefore inappropriate, and a patient-specific adaptive initialization is therefore required. We introduce dynamic time warping to stretch each beat to match a running template and combine it with several other features related to signal quality, including correlation and the percentage of the beat that appeared to be clipped. The features were then presented to a multi-layer perceptron neural network to learn the relationships between the parameters in the presence of good- and bad-quality pulses. An expert-labeled database of 1055 segments of PPG, each 6 s long, recorded from 104 separate critical care admissions during both normal and verified arrhythmic events, was used to train and test our algorithms. An accuracy of 97.5% on the training set and 95.2% on test set was found. The algorithm could be deployed as a stand-alone signal quality assessment algorithm for vetting the clinical utility of PPG traces or any similar quasi-periodic signal.

240 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
91% related
Convolutional neural network
74.7K papers, 2M citations
87% related
Deep learning
79.8K papers, 2.1M citations
87% related
Image segmentation
79.6K papers, 1.8M citations
86% related
Artificial neural network
207K papers, 4.5M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023236
2022471
2021341
2020416
2019420
2018377