scispace - formally typeset
Search or ask a question
Topic

Dynamic Vibration Absorber

About: Dynamic Vibration Absorber is a research topic. Over the lifetime, 4764 publications have been published within this topic receiving 49429 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Simulation results prove the effectiveness of the proposed finite-frequency H ∞ controller method and show that the human body is much sensitive to vibrations between 4 and 8 Hz.
Abstract: In this paper, the parameter optimization and H ∞ control problem of active suspensions equipped in in-wheel motor driven electric ground vehicles are investigated. In order to better isolate the force transmitted to motor bearing, dynamic vibration absorber (DVA) is installed in the active suspension. Parameters of the vibration isolation modules are also optimized in order to achieve better suspension performances. As the human body is much sensitive to vibrations between 4 and 8 Hz, a finite-frequency state-feedback H ∞ controller is designed to achieve the targeted disturbance attenuation in the concerned frequency range while other performances such as road holding capability and small suspension deflection are also maintained. The performance of the proposed finite-frequency H ∞ controller is compared with that of an entire frequency one, simulation results prove the effectiveness of the proposed control method.

100 citations

Journal ArticleDOI
TL;DR: In this paper, an inerter-based device for structural vibration suppression can be realized using an electromagnetic transducer such as a linear motor, where the motor shaft moves, a difference of voltage is generated across the transducers coil.
Abstract: This paper describes how an inerter-based device for structural vibration suppression can be realized using an electromagnetic transducer such as a linear motor. When the motor shaft moves, a difference of voltage is generated across the transducer coil. The voltage difference is proportional to the relative velocity between its two terminals. The electromagnetic transducer will exert a force proportional to current following the Lorentz principle if the circuit is closed around the transducer coil. If an electronic circuit consisting of a capacitor, an inductance and a resistance with the appropriate configuration is connected, the resulting force reflected back into the mechanical domain is equivalent to that achieved by a mechanical inerter-based device. The proposed configuration is easy to implement and very versatile, provided a high quality conversion system with negligible losses. With the use of electromagnetic devices, a new generation of vibration absorbers can be realized, for example in the electrical domain it would be relatively uncomplicated to synthesize multi-frequency or real time tunable vibration absorbers by adding electrical components in parallel. In addition by using resistance emulators in the electrical circuits, part of the absorbed vibration energy can be converted into usable power. Here an electromagnetic tuned inerter damper (E-TID) is tested experimentally using real time dynamic substructuring. A voltage compensation unit was developed in order to compensate for coil losses. This voltage compensation unit requires power, which is acquired through harvesting from the vibration energy using a resistance emulator. A power balance analysis was developed in order to ensure the device can be self sufficient. Promising experimental results, using this approach, have been obtained and are presented in this paper. The ultimate goal of this research is the development of autonomous electromagnetic vibration absorbers, able to harvest energy, convert it into usable power, and use it for vibration control and health monitoring.

99 citations

Journal ArticleDOI
TL;DR: In this paper, the optimal design of dynamic vibration absorbers (DVAs) installed on linear damped systems that are subjected to random loads is studied and closed-form design formulas are provided.

99 citations

Journal ArticleDOI
TL;DR: In this article, a new approach is presented to reduce vibrations for one and two-dimensional mechanical structures, as beam or thin plates, by means of several piezoelectric transducers shunted with a proper electric network system.
Abstract: In this paper a new approach is presented to reduce vibrations for one- and two-dimensional mechanical structures, as beam or thin plates, by means of several piezoelectric transducers shunted with a proper electric network system. The governing equations of the whole system are coupled to each other through the direct and converse piezoelectric effect. More in detail, the mechanical equations are expressed in accordance with the modal theory considering n vibration modes and the electrical equations reduce to the one-dimensional charge equation of electrostatics for each of n considered piezoelectric transducers. In this electromechanical system, a shunting electric device forms an electric subsystem working as multi degrees of freedom (dof’s) damped vibration absorber for the mechanical subsystem. Herein, it is introduced a proper transformation of the electric coordinates in order to approximate the governing equations for the whole shunted system with n uncoupled, single mode piezoelectric shunting systems that can be readily damped by the methods reported in literature. A further numerical optimisation problem on the spatial distribution of the piezoelectric elements allows to achieve a better performance. Numerical case studies of two relevant systems, a double clamped beam and a fully clamped plate, allow to take into account issues relative to the proposed approach. Laboratory experiments carried out in real time on a beam clamped at both ends consent to validate the proposed technique.

99 citations


Network Information
Related Topics (5)
Vibration
80K papers, 849.3K citations
84% related
Finite element method
178.6K papers, 3M citations
76% related
Piston
176.1K papers, 825.4K citations
75% related
Rotor (electric)
179.9K papers, 1.2M citations
74% related
Control theory
299.6K papers, 3.1M citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202347
2022120
2021134
2020162
2019215
2018206