scispace - formally typeset
Search or ask a question
Topic

Dynamic Vibration Absorber

About: Dynamic Vibration Absorber is a research topic. Over the lifetime, 4764 publications have been published within this topic receiving 49429 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a case study of a magnetorheological elastomer (MRE)-based vibration absorber was built up in a simulation and its mechanical performances were analyzed, which demonstrated good capabilities in reducing vibrations.
Abstract: Magnetorheological elastomers (MREs) are smart materials whose mechanical properties, like their modulus and elasticity, can be controlled by an external magnetic field. This feature has resulted in a number of novel applications, such as adaptive tuned dynamic vibration absorbers for suppressing unwanted vibrations over a wide frequency range. MRE-based devices operate in different modes, such as shear mode and squeeze mode; however, the study of mechanical performances of MREs under squeeze mode is very rare. This article aims to investigate MRE performances under both shear and squeeze modes. Experimental studies and simulations were conducted to analyze the MR effect in both modes. These studies indicate a different working frequency ranges for both modes. In a case study, a MRE-based vibration absorber was built up in a simulation and its mechanical performances were analyzed, which demonstrated good capabilities in reducing vibrations.

98 citations

Journal ArticleDOI
TL;DR: In this paper, a viscoelastic coupling damper (VCD) is proposed to increase the level of inherent damping of tall coupled shear wall buildings to control wind-induced and earthquake-induced dynamic vibrations.
Abstract: SUMMARY As high-rise buildings are built taller and more slender, their dynamic behavior becomes an increasingly critical design consideration. Wind-induced vibrations cause an increase in the lateral wind design loads, but more importantly, they can be perceived by building occupants, creating levels of discomfort ranging from minor annoyance to severe motion sickness. The current techniques to address wind vibration perception include stiffening the lateral load-resisting system, adding mass to the building, reducing the number of stories, or incorporating a vibration absorber at the top of the building; each solution has significant economic consequences for builders. Significant distributed damage is also expected in tall buildings under severe seismic loading, as a result of the ductile seismic design philosophy that is widely used for such structures. In this paper, the viscoelastic coupling damper (VCD) that was developed at the University of Toronto to increase the level of inherent damping of tall coupled shear wall buildings to control wind-induced and earthquake-induced dynamic vibrations is introduced. Damping is provided by incorporating VCDs in lieu of coupling beams in common structural configurations and therefore does not occupy any valuable architectural space, while mitigating building tenant vibration perception problems and reducing both the wind and earthquake responses of the structure. This paper provides an overview of this newly proposed system, its development, and its performance benefits as well as the overall seismic and wind design philosophy that it encompasses. Two tall building case studies incorporating VCDs are presented to demonstrate how the system results in more efficient designs. In the examples that are presented, the focus is on the wind and moderate earthquake responses that often govern the design of such tall slender structures while reference is made to other studies where the response of the system under severe seismic loading conditions is examined in more detail and where results from tests conducted on the viscoelastic material and the VCDs in full-scale are presented. Copyright © 2013 John Wiley & Sons, Ltd.

97 citations

Journal ArticleDOI
TL;DR: In this article, a variable stiffness vibration absorber is used for controlling a principal mode and the stiffness is controlled by the microcomputer under the auto-tuning algorithm for creating an anti-resonance state.

97 citations

Journal ArticleDOI
TL;DR: In this article, the use of a tuned inerter damper (TID) as a vibration absorber is studied numerically and experimentally, with civil engineering applications in mind.
Abstract: Summary In this paper, the use of a tuned inerter damper (TID) as a vibration absorber is studied numerically and experimentally, with civil engineering applications in mind. Inerters complete the analogy between mechanical and electrical networks, as the mechanical element equivalent to a capacitor and were developed in the 2000s. Initially, inerters were used for applications in automotive engineering, where they are known as J-dampers. Recently, research has suggested that inerter-based networks could be used for civil engineering applications, offering interesting advantages over traditional tuned mass dampers. In the civil engineering context, research has been mainly theoretical, considering ideal inerters. Because the dynamics of an inerter device include nonlinearities, especially at the low frequencies associated with civil engineering applications, the performance of the TID device using an off-the-shelf inerter has been experimentally tested in the work presented here. The chosen system, comprising a host structure with a TID attached to it, was tested using real-time dynamic substructuring (RTDS) or hybrid testing. The inerter was tested physically, while the remaining components of the TID device, the spring and damper, together with the host structure, were simulated numerically. Displacements and forces at the interface between numerical and physical components are updated in real time. This numerical–physical split allows the optimisation of the TID parameters, because the values of the spring and the damper can be changed without altering the experimental setup. In addition, this configuration takes into account the inerter's potentially complex dynamics by testing it experimentally, together with the characteristics of the host structure. Developing RTDS tests for physical inertial substructures, where part of the fed back interface forces are proportional to acceleration, is a challenging task because of delays arising at the interface between the experimental and the numerical substructures. Problems associated with stability issues caused by delay and causality arise, because we are dealing with neutral and advanced delayed differential equations. A new approach for the substructuring algorithm is proposed, consisting of feeding back the measured force deviation from the ideal inerter instead of the actual force at the interface. The experimental results show that with appropriate retuning of the components in the TID device, the performance in the TID incorporating the real inerter device is close to the ideal inerter device. © 2016 The Authors. Structural Control and Health Monitoring published by John Wiley & Sons, Ltd.

96 citations

Journal ArticleDOI
TL;DR: In this article, the fundamental analysis tools for a Single-Degree-of-Freedom (SDF) state-switchable device are presented, and the application of such a device for the purpose of vibration control in a 2-DOF system is considered.
Abstract: A system that has the capability to make instantaneous changes in its mass, stiffness, or damping may be termed a state-switchable dynamical system. Such a system will display different dynamical responses dependent upon its current state. For example, state-switchable stiffness may be practically obtained through the control of the termination impedance of piezoelectric stiffness elements. If such a switchable stiffness element is incorporated as part of the spring element of a vibration absorber, the change in stiffness causes a change in the resonance frequencies of the system, thereby instantaneously “retuning” the state-switched absorber to a new frequency. This paper briefly develops the fundamental analysis tools for a Single-Degree-of-Freedom state-switchable device, and then considers the application of such a device for the purpose of vibration control in a 2-DOF system. Simulation results indicate that state-switched vibration absorbers may be advantageous over classical passive tuned vibration...

96 citations


Network Information
Related Topics (5)
Vibration
80K papers, 849.3K citations
84% related
Finite element method
178.6K papers, 3M citations
76% related
Piston
176.1K papers, 825.4K citations
75% related
Rotor (electric)
179.9K papers, 1.2M citations
74% related
Control theory
299.6K papers, 3.1M citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202347
2022120
2021134
2020162
2019215
2018206