scispace - formally typeset
Search or ask a question
Topic

Dynamic Vibration Absorber

About: Dynamic Vibration Absorber is a research topic. Over the lifetime, 4764 publications have been published within this topic receiving 49429 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a two-dimensional circular acoustic black hole-based dynamic vibration absorber (2D ABH-DVA) is proposed as an auxiliary component to an existing structure for vibration suppressions.

38 citations

PatentDOI
TL;DR: In this article, a flex-plate tuned vibration absorber (TVA) is proposed for absorbing vibration in vibrating structures, such as in aircraft, where the position of the mass is adaptively moveable with respect to its initial position.
Abstract: A flex-plate tuned vibration absorber (35) including a tuned mass (43) flexibly suspended by one or more flex plates (58). In one aspect the Tunable Vibration Absorber (TVA) (35) is adaptive in that the position of the mass is adaptively moveable with respect to its initial position, thereby effectuating a change in the TVA's resonant frequency. In one embodiment, the tuned mass (43) moves along a rigid frame (53). In another, movement of the mass (43) statistically stresses a preferably disc-shaped flexible plate (58) thereby changing its stiffness. Preferably, a reducer (78) gears down the speed of the motor (64). In another aspect, a TVA system includes a base sensor (40) providing a base vibration signal, a mass sensor (38) for providing a vibration signal of the tuned mass (43), and an electronic controller (42) for generating a control signal to the TVA (35). The TVA finds application for absorbing vibration in vibrating structures, such as in aircraft.

38 citations

Journal ArticleDOI
TL;DR: In this paper, an electrorheological dynamic torsional absorber, called the Smart ER Dynamic Absorber, has been designed in order to reduce torsion rotor vibrations.
Abstract: Torsional rotor vibrations are undesirable phenomena which are very difficult to control in rotating systems. A common method for reducing vibrations involves the use of dynamic absorbers. However, if their physical parameters are constant, the frequency range of efficiency of dynamic absorbers is tight, making them unsuitable for systems with variable speeds. The use of smart materials, due to their variable and controllable mechanical properties, may be a powerful tool for increasing the frequency range. Electrorheological (ER) fluids are attractive materials that undergo very fast reversible changes in their rheological properties upon the application of an electric field. In this study, an electrorheological dynamic torsional absorber, called the Smart ER Dynamic Absorber, has been designed in order to reduce torsional rotor vibrations. Under shear mode, the ER absorber can exhibit various torsional damping and stiffness characteristics when an electric field is applied. A nonlinear empirical model of...

38 citations

Journal ArticleDOI
TL;DR: In this paper, an electromagnetic device with an adaptive synthetic shunt impedance, which provides a controllable effective mechanical stiffness and damping is proposed and implemented digitally and can be altered in real-time to allow the system to adapt.
Abstract: Tuned vibration absorbers (TVAs) are effective devices for vibration control in the presence of tonal excitation, but when the properties of the host structure change or the excitation frequency varies they become detuned and their performance can degrade to an unacceptable level. It is therefore desirable that the properties of the TVA can adapt to maintain optimal tuning. In this paper an electromagnetic device with an adaptive synthetic shunt impedance which provides a controllable effective mechanical stiffness and damping is proposed. The shunt impedance, comprising resistance and capacitance, is implemented digitally and can be altered in real-time to allow the system to adapt. A model-based feedforward controller is designed and implemented to adapt both the shunt resistance and capacitance to ensure the tuned frequency of the vibration absorber tracks the excitation frequency. This ensures that the system has optimal performance throughout a large range of excitation frequencies. Simulations and experimental results show that the adaptive controller can successfully adapt the system to track a variable excitation frequency and hence demonstrates better performance than the equivalent non-adaptive undamped system, as well as an optimally tuned damped system. (Some figures may appear in colour only in the online journal)

38 citations

Journal ArticleDOI
TL;DR: In this article, a qualitative comparison between a piezoelectric vibration absorber and a constrained layer damping treatment is presented, where the damping is concentrated to a single mode by constructing a picolectric absorber.
Abstract: A qualitative comparison between a piezoelectric vibration absorber and a constrained layer damping treatment is presented. Piezoelectric materials convert mechanical strains into electrical charge. Dissipation of the charge results in attenuation of vibration. The damping is concentrated to a single mode by constructing a piezoelectric absorber. The damped vibration absorber is comprised of the piezoelectric material and a passive electronic shunt. Previous research has applied the piezoelectric absorber to one-dimensional structures. This paper applies the absorber to a two-dimensional planar problem. The simple mathematical description of the absorber is modified for the two-dimensional problem. An analytical means of estimating the effectiveness of the piezoelectric absorber is derived. The effectiveness is estimated for an electronics chassis box subjected to random excitation. A typical constrained layer damping treatment is also analytically designed for the problem. The piezoelectric absorber and the constrained layer damping treatment are experimentally applied to identical boxes. Results show that the piezoelectric absorber can provide vibration suppression comparable to that obtained by the constrained layer damping treatment.

37 citations


Network Information
Related Topics (5)
Vibration
80K papers, 849.3K citations
84% related
Finite element method
178.6K papers, 3M citations
76% related
Piston
176.1K papers, 825.4K citations
75% related
Rotor (electric)
179.9K papers, 1.2M citations
74% related
Control theory
299.6K papers, 3.1M citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202347
2022120
2021134
2020162
2019215
2018206