Topic
Earth's magnetic field
About: Earth's magnetic field is a(n) research topic. Over the lifetime, 20360 publication(s) have been published within this topic receiving 446747 citation(s). The topic is also known as: magnetic field of Earth & geomagnetic field.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: In this article, the optimal recalibration of NUVEL-1 is proposed to multiply the angular velocities by a constant, α, of 0.9562, which is a compromise among slightly different calibrations appropriate for slow, medium, and fast rates of seafloor spreading.
Abstract: Recent revisions to the geomagnetic time scale indicate that global plate motion model NUVEL-1 should be modified for comparison with other rates of motion including those estimated from space geodetic measurements. The optimal recalibration, which is a compromise among slightly different calibrations appropriate for slow, medium, and fast rates of seafloor spreading, is to multiply NUVEL-1 angular velocities by a constant, α, of 0.9562. We refer to this simply recalibrated plate motion model as NUVEL-1A, and give correspondingly revised tables of angular velocities and uncertainties. Published work indicates that space geodetic rates are slower on average than those calculated from NUVEL-1 by 6±1%. This average discrepancy is reduced to less than 2% when space geodetic rates are instead compared with NUVEL-1A.
3,209 citations
Book•
[...]
TL;DR: In this article, the potential of the geomagnetic field has been studied in vector calculus, and the results of the potential have been shown to be equivalent to the conversion of units.
Abstract: Introduction 1. The potential 2. Consequences of the potential 3. Newtonian potential 4. Magnetic potential 5. Magnetization 6. Spherical harmonic analysis 7. Regional gravity fields 8. The geomagnetic field 9. Forward method 10. Inverse method 11. Fourier-domain modeling 12. Transformations A. Review of vector calculus B. Subroutines C. Review of sampling theory D. Conversion of units.
2,321 citations
[...]
TL;DR: In this article, an attempt is made to define a geomagnetic storm as an interval of time when a sufficiently intense and long-lasting interplanetary convection electric field leads, through a substantial energization in the magnetosphere-ionosphere system, to an intensified ring current sufficiently strong to exceed some key threshold of the quantifying storm time Dst index.
Abstract: After a brief review of magnetospheric and interplanetary phenomena for intervals with enhanced solar wind-magnetosphere interaction, an attempt is made to define a geomagnetic storm as an interval of time when a sufficiently intense and long-lasting interplanetary convection electric field leads, through a substantial energization in the magnetosphere-ionosphere system, to an intensified ring current sufficiently strong to exceed some key threshold of the quantifying storm time Dst index. The associated storm/substorm relationship problem is also reviewed. Although the physics of this relationship does not seem to be fully understood at this time, basic and fairly well established mechanisms of this relationship are presented and discussed. Finally, toward the advancement of geomagnetic storm research, some recommendations are given concerning future improvements in monitoring existing geomagnetic indices as well as the solar wind near Earth.
1,655 citations
[...]
TL;DR: In this article, the authors investigated the low-energy electron population in the magnetosphere within the local time range ∼17 to ∼22 hours using the OGO 1 satellite and OGO 3.
Abstract: Observations of electrons of energy 125 ev to ∼2 kev with the OGO 1 satellite and of electrons of energy 40 ev to ∼2 kev with OGO 3 (by means of modulated Faraday cup detectors) are used to investigate the low-energy electron population in the magnetosphere within the local-time range ∼17 to ∼22 hours. Intense fluxes of these electrons are confined to a spatial region, termed the plasma sheet, which is an extension of the magnetotail plasma sheet discovered by the Vela satellites and is identified with the soft electron band first detected by Gringauz. The plasma sheet extends over the entire local-time range studied in this investigation, from the magnetospheric tail past the dusk meridian toward the dayside magnetosphere. In latitude it is confined to within 4–6 RE of the geomagnetic and/or solar magnetospheric equatorial plane, in agreement with observations already reported from the Vela satellites; no electron fluxes are detected high above the equator, not even very near the magnetopause. In radial distance the plasma sheet is terminated by the magnetopause on the outside and by a well-defined sharp inner boundary on the inside. The inner boundary has been traced from the equatorial region to the highest latitudes investigated, ∼40°; during geomagnetically quiet periods, it is observed at an equatorial distance of 11 ± 1 RE and appears to extend to higher latitudes along magnetic field lines. Weak or no electron fluxes are found between the inner boundary of the plasma sheet and the outer boundary of the plasmasphere. Detection (by an indirect process) of the very high ion densities within the plasmasphere gives positions for its boundary in good agreement with other determinations. During periods of magnetic bay activity, the plasma sheet extends closer to the earth; the inner boundary of the plasma sheet is then found at equatorial distances of 6–8 RE. This is most simply interpreted as the result of an actual inward motion of the plasma during a bay. In one case, it was possible to associate the beginning of this motion with the onset of the bay and to estimate an average radial speed of ∼12 km/sec, from which an electric field corresponding to ∼48 kilovolts across the magnetospheric tail was inferred. Within the plasma sheet, the electron population is characterized by number densities from 0.3 to 30 cm−3 and mean energies from 50 to 1600 ev and higher, with a strong anticorrelation between density and mean energy, so that the electron energy density (∼1 kev cm−3) and energy flux (∼3 ergs cm−2 sec−1) show relatively little variation. The lower energies and higher densities tend to occur during periods of geomagnetic disturbance. The nonobservation of electrons in regions above the plasma sheet implies an upper limit on the electron number density of 5 × 10−2 cm−3 if their mean energy is assumed to be ∼50 ev (typical of the magnetosheath) and 10−2 cm−3 if the energy is ∼1 kev (typical of the plasma sheet). At the inner boundary of the plasma sheet there is a sharp softening of the electron spectrum with decreasing radial distance but apparently little change in the electron number density. The electron energy density decreases across the inner boundary roughly as ∼exp (distance/0.4 RE) during quiet periods; during times of magnetic bay activity the energy density decreases as ∼exp (distance/0.6 RE), and there is a more complicated spatial structure of density and mean energy.
1,461 citations
[...]
TL;DR: In this article, the relative widths of the magnetic polarity intervals for the entire Late Cretaceous and Cenozoic have been systematically determined from magnetic profiles from the world's ocean basins.
Abstract: We have constructed a magnetic polarity time scale for the Late Cretaceous and Cenozoic based on an analysis of marine magnetic profiles from the world's ocean basins. This is the first time, since Heirtzler et al. (1968) published their time scale, that the relative widths of the magnetic polarity intervals for the entire Late Cretaceous and Cenozoic have been systematically determined from magnetic profiles. A composite geomagnetic polarity sequence was derived based primarily on data from the South Atlantic. Anomaly spacings in the South Atlantic were constrained by a combination of finite rotation poles and averages of stacked profiles. Fine-scale information was derived from magnetic profiles on faster spreading ridges in the Pacific and Indian Oceans and inserted into the South Ariantic sequence. Based on the assumption that spreading rates in the South Atlantic were smoothly varying but not necessarily constant, a time scale was generated by using a spline function to fit a set of nine age calibration points
1,381 citations