scispace - formally typeset
Search or ask a question

Showing papers on "Earth's magnetic field published in 2017"


Journal ArticleDOI
TL;DR: In this article, the authors review advances in understanding of the geomagnetic daily variation and its source ionospheric currents during the past 75 years and provide possible directions for future work.
Abstract: A record of the geomagnetic field on the ground sometimes shows smooth daily variations on the order of a few tens of nano teslas. These daily variations, commonly known as Sq, are caused by electric currents of several $\upmu \mbox{A}/\mbox{m}^{2}$ flowing on the sunlit side of the E-region ionosphere at about 90–150 km heights. We review advances in our understanding of the geomagnetic daily variation and its source ionospheric currents during the past 75 years. Observations and existing theories are first outlined as background knowledge for the non-specialist. Data analysis methods, such as spherical harmonic analysis, are then described in detail. Various aspects of the geomagnetic daily variation are discussed and interpreted using these results. Finally, remaining issues are highlighted to provide possible directions for future work.

231 citations


Journal ArticleDOI
TL;DR: In this paper, a sequence of three convection-driven simulations in a rapidly rotating spherical shell is used to reach realistic turbulent regime in direct numerical simulations of the geodynamo.
Abstract: We present an attempt to reach realistic turbulent regime in direct numerical simulations of the geodynamo. We rely on a sequence of three convection-driven simulations in a rapidly rotating spherical shell. The most extreme case reaches towards the Earth's core regime by lowering viscosity (magnetic Prandtl number Pm=0.1) while maintaining vigorous convection (magnetic Reynolds number Rm>500) and rapid rotation (Ekman number E=1e-7), at the limit of what is feasible on today's supercomputers. A detailed and comprehensive analysis highlights several key features matching geomagnetic observations or dynamo theory predictions – all present together in the same simulation – but it also unveils interesting insights relevant for Earth's core dynamics. In this strong-field, dipole-dominated dynamo simulation, the magnetic energy is one order of magnitude larger than the kinetic energy. The spatial distribution of magnetic intensity is highly heterogeneous, and a stark dynamical contrast exists between the interior and the exterior of the tangent cylinder (the cylinder parallel to the axis of rotation that circumscribes the inner core). In the interior, the magnetic field is strongest, and is associated with a vigorous twisted polar vortex, whose dynamics may occasionally lead to the formation of a reverse polar flux patch at the surface of the shell. Furthermore, the strong magnetic field also allows accumulation of light material within the tangent cylinder, leading to stable stratification there. Torsional Alfven waves are frequently triggered in the vicinity of the tangent cylinder and propagate towards the equator. Outside the tangent cylinder, the magnetic field inhibits the growth of zonal winds and the kinetic energy is mostly non-zonal. Spatio-temporal analysis indicates that the low-frequency, non-zonal flow is quite geostrophic (columnar) and predominantly large-scale: an m=1 eddy spontaneously emerges in our most extreme simulations, without any heterogeneous boundary forcing. Our spatio-temporal analysis further reveals that (i) the low-frequency, large-scale flow is governed by a balance between Coriolis and buoyancy forces – magnetic field and flow tend to align, minimizing the Lorentz force; (ii) the high-frequency flow obeys a balance between magnetic and Coriolis forces; (iii) the convective plumes mostly live at an intermediate scale, whose dynamics is driven by a 3-term 1 MAC balance – involving Coriolis, Lorentz and buoyancy forces. However, small-scale (E^{1/3}) quasi-geostrophic convection is still observed in the regions of low magnetic intensity.

196 citations


DOI
22 Nov 2017
TL;DR: In this paper, the authors describe the energy source responsible for the disturbance effects and its parameterization by geomagnetic activity indices, and discuss of ionospheric storm effects at middle latitudes.
Abstract: This chapter describes the energy source responsible for the disturbance effects and its parameterization by geomagnetic activity indices. It discusses of ionospheric storm effects at middle latitudes, which begins with a brief description of the basic storm morphology and a summary of possible disturbance mechanisms. The chapter continues with the outline of a thermospheric-ionospheric storm model and with a compilation of ionospheric storm simulation studies. During less disturbed conditions it was found that with increasing magnetic activity the F-region ionization density decreased during the day and sometimes increased during the night. A prominent F-region feature associated with this ionization source is the auroral oval density enhancement, which has been denoted as plasma torus. The completely different disturbance behavior of the ionosphere two comparable locations indicates that the global morphology of ionospheric storms is complex. The distinction between positive and negative ionospheric storms represents the simplest possible classification.

184 citations


Journal ArticleDOI
TL;DR: In this paper, the geostationary Earth Orbit (GEO) observations of BeiDou Navigation Satellite System (BDS) are used to investigate the ionospheric responses to the geomagnetic storm.
Abstract: The most intense geomagnetic storm in solar cycle 24 occurred on March 17, 2015, and the detailed ionospheric storm morphologies are difficultly obtained from traditional observations. In this paper, the Geostationary Earth Orbit (GEO) observations of BeiDou Navigation Satellite System (BDS) are for the first time used to investigate the ionospheric responses to the geomagnetic storm. Using BDS GEO and GIMs TEC series, negative and positive responses to the March 2015 storm are found at local and global scales. During the main phase, positive ionospheric storm is the main response to the geomagnetic storm, while in the recovery phase, negative phases are pronounced at all latitudes. Maximum amplitudes of negative and positive phases appear in the afternoon and post-dusk sectors during both main and recovery phases. Furthermore, dual-peak positive phases in main phase and repeated negative phase during the recovery are found from BDS GEO observations. The geomagnetic latitudes corresponding to the maximum disturbances during the main and recovery phases show large differences, but they are quasi-symmetrical between southern and northern hemispheres. No clear zonal propagation of traveling ionospheric disturbances is detected in the GNSS TEC disturbances at high and low latitudes. The thermospheric composition variations could be the dominant source of the observed ionospheric storm effect from GUVI $$\hbox {[O]/[N}_{2}]$$ ratio data as well as storm-time electric fields. Our study demonstrates that the BDS (especially the GEO) observations are an important data source to observe ionospheric responses to the geomagnetic storm.

91 citations


Journal ArticleDOI
TL;DR: In this paper, the authors outline the two main network modeling approaches that are mathematically equivalent and show an example for a simple circuit, and show how multiple voltage levels can be included in GIC modeling and how the network configuration affects the GIC values.
Abstract: Understanding the geomagnetic hazard to power systems requires the ability to model the geomagnetically induced currents (GIC) produced in a power network. This paper presents the developments in GIC modeling starting with an examination of fundamental questions about where the driving force for GIC is located. Then we outline the two main network modeling approaches that are mathematically equivalent and show an example for a simple circuit. Accurate modeling of the GIC produced during real space weather events requires including the appropriate system characteristics, magnetic source fields, and Earth conductivity structure. It is shown how multiple voltage levels can be included in GIC modeling and how the network configuration affects the GIC values. Magnetic source fields can be included by using “plane wave” or line current models or by using geomagnetic observatory data with an appropriate interpolation scheme. Earth conductivity structure can be represented by 1-D, 2-D, or 3-D models that are used to calculate the transfer function between electric and magnetic fields at the Earth's surface. For 2-D and 3-D structures this will involve a tensor impedance function and electric fields that are not necessarily orthogonal to the magnetic field variations. It is now technically possible to include all these features in the modeling of GIC, and various software implementations are being developed to make these features more accessible for use in risk studies.

85 citations


Journal ArticleDOI
TL;DR: The PWING project as mentioned in this paper has been carried out since April 2016 to provide the global distribution and quantitative evaluation of the dynamical variation of these plasmas and waves in the inner magnetosphere.
Abstract: The plasmas (electrons and ions) in the inner magnetosphere have wide energy ranges from electron volts to mega-electron volts (MeV). These plasmas rotate around the Earth longitudinally due to the gradient and curvature of the geomagnetic field and by the co-rotation motion with timescales from several tens of hours to less than 10 min. They interact with plasma waves at frequencies of mHz to kHz mainly in the equatorial plane of the magnetosphere, obtain energies up to MeV, and are lost into the ionosphere. In order to provide the global distribution and quantitative evaluation of the dynamical variation of these plasmas and waves in the inner magnetosphere, the PWING project (study of dynamical variation of particles and waves in the inner magnetosphere using ground-based network observations, http://www.isee.nagoya-u.ac.jp/dimr/PWING/ ) has been carried out since April 2016. This paper describes the stations and instrumentation of the PWING project. We operate all-sky airglow/aurora imagers, 64-Hz sampling induction magnetometers, 40-kHz sampling loop antennas, and 64-Hz sampling riometers at eight stations at subauroral latitudes (~ 60° geomagnetic latitude) in the northern hemisphere, as well as 100-Hz sampling EMCCD cameras at three stations. These stations are distributed longitudinally in Canada, Iceland, Finland, Russia, and Alaska to obtain the longitudinal distribution of plasmas and waves in the inner magnetosphere. This PWING longitudinal network has been developed as a part of the ERG (Arase)-ground coordinated observation network. The ERG (Arase) satellite was launched on December 20, 2016, and has been in full operation since March 2017. We will combine these ground network observations with the ERG (Arase) satellite and global modeling studies. These comprehensive datasets will contribute to the investigation of dynamical variation of particles and waves in the inner magnetosphere, which is one of the most important research topics in recent space physics, and the outcome of our research will improve safe and secure use of geospace around the Earth.

83 citations


Journal ArticleDOI
TL;DR: In this article, the authors review the primary differences in the magnetic field at polar latitudes, and the consequences that these have for the magnetosphere-ionosphere-thermosphere coupling.
Abstract: The solar-wind magnetosphere interaction primarily occurs at altitudes where the dipole component of Earth’s magnetic field is dominating. The disturbances that are created in this interaction propagate along magnetic field lines and interact with the ionosphere–thermosphere system. At ionospheric altitudes, the Earth’s field deviates significantly from a dipole. North–South asymmetries in the magnetic field imply that the magnetosphere–ionosphere–thermosphere (M–I–T) coupling is different in the two hemispheres. In this paper we review the primary differences in the magnetic field at polar latitudes, and the consequences that these have for the M–I–T coupling. We focus on two interhemispheric differences which are thought to have the strongest effects: 1) A difference in the offset between magnetic and geographic poles in the Northern and Southern Hemispheres, and 2) differences in the magnetic field strength at magnetically conjugate regions. These asymmetries lead to differences in plasma convection, neutral winds, total electron content, ion outflow, ionospheric currents and auroral precipitation.

81 citations


Journal ArticleDOI
TL;DR: In this paper, a full-halo coronal mass ejection (CME) was associated with an M2-class flare observed at 01:42 UT, located near disk center (N12 E16).
Abstract: A full-halo coronal mass ejection (CME) left the Sun on 21 June 2015 from active region (AR) NOAA 12371. It encountered Earth on 22 June 2015 and generated a strong geomagnetic storm whose minimum Dst value was −204 nT. The CME was associated with an M2-class flare observed at 01:42 UT, located near disk center (N12 E16). Using satellite data from solar, heliospheric, and magnetospheric missions and ground-based instruments, we performed a comprehensive Sun-to-Earth analysis. In particular, we analyzed the active region evolution using ground-based and satellite instruments (Big Bear Solar Observatory (BBSO), Interface Region Imaging Spectrograph (IRIS), Hinode, Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO), Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), covering H $\upalpha$ , EUV, UV, and X-ray data); the AR magnetograms, using data from SDO/Helioseismic and Magnetic Imager (HMI); the high-energy particle data, using the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument; and the Rome neutron monitor measurements to assess the effects of the interplanetary perturbation on cosmic-ray intensity. We also evaluated the 1 – 8 A soft X-ray data and the ${\sim}\, 1$ MHz type III radio burst time-integrated intensity (or fluence) of the flare in order to predict the associated solar energetic particle (SEP) event using the model developed by Laurenza et al. (Space Weather 7(4), 2009). In addition, using ground-based observations from lower to higher latitudes (International Real-time Magnetic Observatory Network (INTERMAGNET) and European Quasi-Meridional Magnetometer Array (EMMA)), we reconstructed the ionospheric current system associated with the geomagnetic sudden impulse (SI). Furthermore, Super Dual Auroral Radar Network (SuperDARN) measurements were used to image the global ionospheric polar convection during the SI and during the principal phases of the geomagnetic storm. In addition, to investigate the influence of the disturbed electric field on the low-latitude ionosphere induced by geomagnetic storms, we focused on the morphology of the crests of the equatorial ionospheric anomaly by the simultaneous use of the Global Navigation Satellite System (GNSS) receivers, ionosondes, and Langmuir probes onboard the Swarm constellation satellites. Moreover, we investigated the dynamics of the plasmasphere during the different phases of the geomagnetic storm by examining the time evolution of the radial profiles of the equatorial plasma mass density derived from field line resonances detected at the EMMA network ( $1.5 < \mathrm{L} < 6.5$ ). Finally, we present the general features of the geomagnetic response to the CME by applying innovative data analysis tools that allow us to investigate the time variation of ground-based observations of the Earth’s magnetic field during the associated geomagnetic storm.

70 citations


Journal ArticleDOI
TL;DR: In this paper, a comprehensive 4-year statistics of Van Allen Probes measurements is carried out to assess their consequences on the dynamics of the inner radiation belt and slot region, and numerical calculations of the corresponding quasilinear pitch angle diffusion rates are performed to demonstrate the crucial role played by VLF waves from transmitters in energetic electron loss at L < 2.5.
Abstract: Whistler-mode Very Low Frequency (VLF) waves from powerful ground-based transmitters can resonantly scatter energetic plasmaspheric electrons and precipitate them into the atmosphere. A comprehensive 4-year statistics of Van Allen Probes measurements is carried out to assess their consequences on the dynamics of the inner radiation belt and slot region. Statistical models of the measured wave electric field power and of the inferred full wave magnetic amplitude are provided as a function of L, magnetic local time, season, and Kp over L=1-3, revealing the localization of VLF wave intensity and its variation with geomagnetic activity over 2012-2016. Since this VLF wave model can be directly used together with existing hiss and lightning-generated wave models in radiation belt simulation codes, we perform numerical calculations of the corresponding quasilinear pitch angle diffusion rates, allowing us to demonstrate the crucial role played by VLF waves from transmitters in energetic electron loss at L<2.5.

70 citations


Journal ArticleDOI
TL;DR: It was found that the participants’ HRV rhythms synchronized across the 31-day period at a period of approximately 2.5 days, even though all participants were in separate locations, which suggests that daily autonomic nervous system activity not only responds to changes in solar and geomagnetic activity, but is synchronized with the time-varying magnetic fields associated withGeomagnetic field-line resonances and Schumann resonances.
Abstract: A coupling between geomagnetic activity and the human nervous system’s function was identified by virtue of continuous monitoring of heart rate variability (HRV) and the time-varying geomagnetic field over a 31-day period in a group of 10 individuals who went about their normal day-to-day lives. A time series correlation analysis identified a response of the group’s autonomic nervous systems to various dynamic changes in the solar, cosmic ray, and ambient magnetic field. Correlation coefficients and p values were calculated between the HRV variables and environmental measures during three distinct time periods of environmental activity. There were significant correlations between the group’s HRV and solar wind speed, Kp, Ap, solar radio flux, cosmic ray counts, Schumann resonance power, and the total variations in the magnetic field. In addition, the time series data were time synchronized and normalized, after which all circadian rhythms were removed. It was found that the participants’ HRV rhythms synchronized across the 31-day period at a period of approximately 2.5 days, even though all participants were in separate locations. Overall, this suggests that daily autonomic nervous system activity not only responds to changes in solar and geomagnetic activity, but is synchronized with the time-varying magnetic fields associated with geomagnetic field-line resonances and Schumann resonances.

69 citations


Journal ArticleDOI
TL;DR: In this paper, a review of the methods currently used to construct models of the internal field, focusing on techniques to handle magnetospheric and ionospheric signals, is presented.
Abstract: Measurements of the Earth’s magnetic field collected by low-Earth-orbit satellites such as Swarm and CHAMP, as well as at ground observatories, are dominated by sources in the Earth’s interior. However these measurements also contain significant contributions from more rapidly-varying current systems in the ionosphere and magnetosphere. In order to fully exploit magnetic data to probe the physical properties and dynamics of the Earth’s interior, field models with suitable treatments of external sources, and their associated induced signals, are essential. Here we review the methods presently used to construct models of the internal field, focusing on techniques to handle magnetospheric and ionospheric signals. Shortcomings of these techniques often limit the quality, as well as spatial and temporal resolution, of internal field models. We document difficulties in using track-by-track analysis to characterize magnetospheric field fluctuations, differences in internal field models that result from alternative treatments of the quiet-time ionospheric field, and challenges associated with rapidly changing, but spatially correlated, magnetic signatures of polar cap current systems. Possible strategies for improving internal field models are discussed, many of which are described in more detail elsewhere in this volume.

Journal ArticleDOI
TL;DR: In this article, the authors investigate ionospheric/thermospheric behavior during the period from 21 to 23 June 2015, when three interplanetary shocks (IS) of different intensities arrived at Earth.
Abstract: By using data from multiple instruments, we investigate ionospheric/thermospheric behavior during the period from 21 to 23 June 2015, when three interplanetary shocks (IS) of different intensities arrived at Earth. The first IS was registered at 16:45 UT on 21 June and caused ~50 nT increase in the SYM-H index. The second IS arrived at 5:45 UT on 22 June and induced an enhancement of the auroral/substorm activity that led to rapid increase of thermospheric neutral mass density and ionospheric vertical total electron content at high latitudes. Several hours later, topside electron content and electron density increased at low latitudes on the nightside. The third and much larger IS arrived at 18:30 UT on 22 June and initiated a major geomagnetic storm that lasted for many hours. The storm provoked significant effects in the thermosphere and ionosphere on both dayside and nightside. In the thermosphere, the dayside neutral mass density exceeded the quiet time levels by 300-500%, with stronger effects in the summer hemisphere. In the ionosphere, both positive and negative storm effects were observed on both dayside and nightside. We compared the ionospheric observations with simulations by the coupled Sami3 is Also a Model of the Ionosphere/Rice Convection Model (SAMI3/RCM) model. We find rather good agreement between the data and the model for the first phase of the storm, when the prompt penetration electric field (PPEF) was the principal driver. At the end of the storm main phase, when the ionospheric effects were, most likely, driven by a combination of PPEF and thermospheric winds, the modeling results agree less with the observations.

Journal ArticleDOI
TL;DR: In this article, a three-dimensional dynamic electron density (DEN3D) model was developed using a feed-forward neural network with electron densities obtained from four satellite missions, which can reproduce the observed density with a correlation coefficient of 0.95 and predict test data set with error less than a factor of 2.
Abstract: A plasma density model of the inner magnetosphere is important for a variety of applications including the study of wave-particle interactions, and wave excitation and propagation. Previous empirical models have been developed under many limiting assumptions and do not resolve short-term variations, which are especially important during storms. We present a three-dimensional dynamic electron density (DEN3D) model developed using a feedforward neural network with electron densities obtained from four satellite missions. The DEN3D model takes spacecraft location and time series of solar and geomagnetic indices (F10.7, SYM-H, and AL) as inputs. It can reproduce the observed density with a correlation coefficient of 0.95 and predict test data set with error less than a factor of 2. Its predictive ability on out-of-sample data is tested on field-aligned density profiles from the IMAGE satellite. DEN3D's predictive ability provides unprecedented opportunities to gain insight into the 3-D behavior of the inner magnetospheric plasma density at any time and location. As an example, we apply DEN3D to a storm that occurred on 1 June 2013. It successfully reproduces various well-known dynamic features in three dimensions, such as plasmaspheric erosion and recovery, as well as plume formation. Storm time long-term density variations are consistent with expectations; short-term variations appear to be modulated by substorm activity or enhanced convection, an effect that requires further study together with multispacecraft in situ or imaging measurements. Investigating plasmaspheric refilling with the model, we find that it is not monotonic in time and is more complex than expected from previous studies, deserving further attention.

Journal ArticleDOI
TL;DR: In this article, a neural network model was proposed to reconstructing the global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices for 2≤L≤6 and all local times.
Abstract: We propose a new empirical model for reconstructing the global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. Utilizing the density database obtained using the NURD (Neural-network-based Upper hybrid Resonance Determination) algorithm for the period of October 1, 2012 - July 1, 2016, in conjunction with solar wind data and geomagnetic indices, we develop a neural network model that is capable of globally reconstructing the dynamics of the cold plasma density distribution for 2≤L≤6 and all local times. We validate and test the model by measuring its performance on independent datasets withheld from the training set and by comparing the model predicted global evolution with global images of He+ distribution in the Earth's plasmasphere from the IMAGE Extreme UltraViolet (EUV) instrument. We identify the parameters that best quantify the plasmasphere dynamics by training and comparing multiple neural networks with different combinations of input parameters (geomagnetic indices, solar wind data, and different durations of their time history). The optimal model is based on the 96-hour time history of Kp, AE, SYM-H, and F10.7 indices. The model successfully reproduces erosion of the plasmasphere on the night side and plume formation and evolution. We demonstrate results of both local and global plasma density reconstruction. This study illustrates how global dynamics can be reconstructed from local in-situ observations by using machine learning techniques.

Journal ArticleDOI
TL;DR: In this paper, a new high-resolution paleomagnetic record from a continuous marine succession in the Chiba composite section of the Kokumoto Formation of the Kazusa Group, Japan, reveals detailed behaviors of the virtual geomagnetic poles (VGPs) and relative paleointensity changes during the M-B polarity transition.
Abstract: The youngest geomagnetic polarity reversal, the Matuyama–Brunhes (M–B) boundary, provides an important plane of data for sediments, ice cores, and lavas. The geomagnetic field intensity and directional changes that occurred during the reversal also provide important information for understanding the dynamics of the Earth’s outer core, which generates the magnetic field. However, the reversal process is relatively rapid in terms of the geological timescale; therefore, adequate temporal resolution of the geomagnetic field record is essential for addressing these topics. Here, we report a new high-resolution paleomagnetic record from a continuous marine succession in the Chiba composite section of the Kokumoto Formation of the Kazusa Group, Japan, that reveals detailed behaviors of the virtual geomagnetic poles (VGPs) and relative paleointensity changes during the M–B polarity transition. The resultant relative paleointensity and VGP records show a significant paleointensity minimum near the M–B boundary, which is accompanied by a clear “polarity switch.” A newly obtained high-resolution oxygen isotope chronology for the Chiba composite section indicates that the M–B boundary is located in the middle of marine isotope stage (MIS) 19 and yields an age of 771.7 ka for the boundary. This age is consistent with those based on the latest astronomically tuned marine and ice core records and with the recalculated age of 770.9 ± 7.3 ka deduced from the U–Pb zircon age of the Byk-E tephra. To the best of our knowledge, our new paleomagnetic data represent one of the most detailed records on this geomagnetic field reversal that has thus far been obtained from marine sediments and will therefore be key for understanding the dynamics of the geomagnetic dynamo and for calibrating the geological timescale.

Proceedings ArticleDOI
01 Jul 2017
TL;DR: A novel indoor localization technique that uses magnetometer sensor readings as input to the artificial neural network models that will improve the localization accuracy and address the problem of continuous route tracking, which was not possible with the RF-based fingerprinting.
Abstract: The time-varying, unstable nature of RF signals has limited the accuracy of RF-based indoor positioning techniques such as Wi-Fi fingerprinting. Positioning errors of over 10 meters are reported in large-scale indoor environment such as airport and department stores. Compared to RF or ultrasound signals, the geomagnetic field signal exhibits stable signal strength in time domain. However, the existing geomagnetic field based indoor localization still relies on the fingerprinting technique, which is borrowed from the RF-based indoor positioning. This cannot resolve the distribution of the same geomagnetic field values and thus became a major reason for diminished performance of geomagnetic- based indoor localization. In this paper, we propose a novel indoor localization technique that uses magnetometer sensor readings as input to the artificial neural network models. The idea is that although there can be multiple locations having the same magnetic field value, as a pedestrian moves the sequence of magnetic field values will lead to a unique pattern of the sensor readings over time. We use a recurrent neural network (RNN) since it can characterize a particular location based on the current input as well as the past sequence of inputs. We first build a geomagnetic field map on our campus test-bed. Then, we generate a million traces of various pedestrian walking patterns from the map. We use Google Tensorflow with NVIDIA cuDNN library as a Deep Learning framework. 95% of the traces are used for training and 5% of the traces are used for localization evaluation. In this preliminary evaluation, we show an average positioning error of 1.062 meters compared to the average error of 3.14 meters of our BLE fingerprinting results. We cannot only improve the localization accuracy but we are also able to address the problem of continuous route tracking, which was not possible with the RF-based fingerprinting.

Journal ArticleDOI
TL;DR: In this paper, the authors combine previously developed approximate analytical expressions of electron lifetimes with recent statistical models of plasma density, ULF, whistler mode, and electromagnetic ion cyclotron waves, and demonstrate that geomagnetic activity and plasma density actually govern the inner structure of the radiation belts through several simple analytical scaling laws when Kp < 3.
Abstract: Accurately modeling the evolution of the electron radiation belts within the plasmasphere represents both an imperative goal for space weather forecasting and a great challenge. Combining previously developed approximate analytical expressions of electron lifetimes with recent statistical models of plasma density, ULF, whistler-mode, and electromagnetic ion cyclotron waves, we demonstrate that geomagnetic activity and plasma density actually govern the inner structure of the radiation belts through several simple analytical scaling laws when Kp < 3. Many of the observed characteristic features of electron fluxes in the energy versus L shell parameter space are straightforwardly explained. In particular, the upper energy limit of significant electron fluxes at L = 1.5 is estimated as ∼1 MeV in agreement with recent satellite observations. This approximate analytical model represents a very simple and powerful tool for exploring and better understanding the complex variations of the inner structure of the radiation belts with geomagnetic activity during relatively quiet times.

Journal ArticleDOI
TL;DR: In this article, the Earth's upper atmosphere and ionosphere undergoes large and complex perturbations during and after geomagnetic storms, including electric fields, plasma drifts and currents with a broad range of temporal and spatial scales from high to equatorial latitudes.
Abstract: The Earth’s upper atmosphere and ionosphere undergoes large and complex perturbations during and after geomagnetic storms. Thermospheric winds driven by enhanced energy and momentum due to geomagnetic activity generate large disturbance electric fields, plasma drifts and currents with a broad range of temporal and spatial scales from high to equatorial latitudes. This disturbance dynamo mechanism plays a fundamental role on the response of the middle and low-latitude ionosphere to geomagnetic activity. In this review, we initially describe the early evidence for the importance of this process and the first simulation study which already was able to explain its main effects on the electrodynamics of the middle and low-latitude ionosphere. We then describe the results of more recent simulations and the extensive experimental work that highlights the importance of this mechanism for ionospheric space weather studies extending to post-storms periods, and present some suggestions for future studies.

Journal ArticleDOI
TL;DR: In this paper, the authors present the first comprehensive statistical study of SAPS using measurements from the U.S. midlatitude Super Dual Auroral Radar Network (SuperDARN) radars.
Abstract: The subauroral polarization streams (SAPS) are latitudinally narrow regions of westward directed flows observed equatorward of the evening sector auroral oval. Previous studies have shown that SAPS generally occur during geomagnetically disturbed conditions and exhibit a strong dependence on geomagnetic activity. In this paper, we present the first comprehensive statistical study of SAPS using measurements from the U.S. midlatitude Super Dual Auroral Radar Network (SuperDARN) radars. The study period spans January 2011 to December 2014, and the results show that SuperDARN radars observe SAPS over a broad range of activity levels spanning storm time and nonstorm conditions. During relatively quiet conditions (−10 nT

Journal ArticleDOI
TL;DR: In this article, a proper representation of the magnetospheric ring current effect is presented, which may help to properly quantify the magnetic contribution from the tail current for geomagnetic field modelling.
Abstract: Magnetospheric currents play an important role in the electrodynamics of near-Earth space. This has been the topic of many space science studies. Here we focus on the magnetic fields they cause close to Earth. Their contribution to the geomagnetic field is the second largest after the core field. Significant progress in interpreting the magnetic fields from the different sources has been achieved thanks to magnetic satellite missions like Orsted, CHAMP and now Swarm. Of particular interest for this article is a proper representation of the magnetospheric ring current effect. Uncertainties in modelling its effect still produce the largest residuals between observations and present-day geomagnetic field models. A lot of progress has been achieved so far, but there are still open issues like the characteristics of the partial ring current. Other currents discussed are those flowing in the magnetospheric tail. Also their magnetic contribution at LEO orbits is non-negligible. Treating them as an independent source is a more recent development, which has cured some of the problems in geomagnetic field modelling. Unfortunately there is no index available for characterising the tail current intensity. Here we propose an approach that may help to properly quantify the magnetic contribution from the tail current for geomagnetic field modelling. Some open questions that require further investigation are mentioned at the end.

Journal ArticleDOI
TL;DR: In this paper, the ForeCAT In situ Data Observer (FIDO) model was proposed to predict the magnetic field of CMEs and the impact of coronal mass ejections (CMEs).
Abstract: Predicting the impact of coronal mass ejections (CMEs) and the southward component of their magnetic field is one of the key goals of space weather forecasting. We present a new model, the ForeCAT In situ Data Observer (FIDO), for predicting the in situ magnetic field of CMEs. We first simulate a CME using ForeCAT, a model for CME deflection and rotation resulting from the background solar magnetic forces. Using the CME position and orientation from ForeCAT, we then determine the passage of the CME over a simulated spacecraft. We model the CME's magnetic field using a force-free flux rope and we determine the in situ magnetic profile at the synthetic spacecraft. We show that FIDO can reproduce the general behavior of four observed CMEs. FIDO results are very sensitive to the CME's position and orientation, and we show that the uncertainty in a CME's position and orientation from coronagraph images corresponds to a wide range of in situ magnitudes and even polarities. This small range of positions and orientations also includes CMEs that entirely miss the satellite. We show that two derived parameters (the normalized angular distance between the CME nose and satellite position and the angular difference between the CME tilt and the position angle of the satellite with respect to the CME nose) can be used to reliably determine whether an impact or miss occurs. We find that the same criteria separate the impacts and misses for cases representing all four observed CMEs.

Journal ArticleDOI
TL;DR: In this paper, the authors present initial results from a GIC model using a thin-sheet approach with detailed surface and subsurface conductivity models to compute the induced geoelectric field.
Abstract: Geomagnetically induced currents (GICs) in power systems, which can lead to transformer damage over the short and the long term, are a result of space weather events and geomagnetic variations. For a long time, only high-latitude areas were considered to be at risk from these currents, but recent studies show that considerable GICs also appear in midlatitude and equatorial countries. In this paper, we present initial results from a GIC model using a thin-sheet approach with detailed surface and subsurface conductivity models to compute the induced geoelectric field. The results are compared to measurements of direct currents in a transformer neutral and show very good agreement for short-period variations such as geomagnetic storms. Long-period signals such as quiet-day diurnal variations are not represented accurately, and we examine the cause of this misfit. The modelling of GICs from regionally varying geoelectric fields is discussed and shown to be an important factor contributing to overall model accuracy. We demonstrate that the Austrian power grid is susceptible to large GICs in the range of tens of amperes, particularly from strong geomagnetic variations in the east–west direction.

Journal ArticleDOI
TL;DR: In this paper, the authors present a review on geomagnetic indices describing global magnetic storm activity (Kp, am, Dst and dDst/dt) and on indices designed to characterize high latitude currents and substorms (PC and AE-indices and their variants).
Abstract: We present a review on geomagnetic indices describing global geomagnetic storm activity (Kp, am, Dst and dDst/dt) and on indices designed to characterize high latitude currents and substorms (PC and AE-indices and their variants). The focus in our discussion is in main field modelling, where indices are primarily used in data selection criteria for weak magnetic activity. The publicly available extensive data bases of index values are used to derive joint conditional Probability Distribution Functions (PDFs) for different pairs of indices in order to investigate their mutual consistency in describing quiet conditions. This exercise reveals that Dst and its time derivative yield a similar picture as Kp on quiet conditions as determined with the conditions typically used in internal field modelling. Magnetic quiescence at high latitudes is typically searched with the help of Merging Electric Field (MEF) as derived from solar wind observations. We use in our PDF analysis the PC-index as a proxy for MEF and estimate the magnetic activity level at auroral latitudes with the AL-index. With these boundary conditions we conclude that the quiet time conditions that are typically used in main field modelling ( $\mathit{PC}<0.8$ , $\mathit{Kp}<2$ and $|\mathit{Dst}|<30~\mbox{nT}$ ) correspond to weak auroral electrojet activity quite well: Standard size substorms are unlikely to happen, but other types of activations (e.g. pseudo breakups $\mathit{AL}>-300~\mbox{nT}$ ) can take place, when these criteria prevail. Although AE-indices have been designed to probe electrojet activity only in average conditions and thus their performance is not optimal during weak activity, we note that careful data selection with advanced AE-variants may appear to be the most practical way to lower the elevated RMS-values which still exist in the residuals between modeled and observed values at high latitudes. Recent initiatives to upgrade the AE-indices, either with a better coverage of observing stations and improved baseline corrections (the SuperMAG concept) or with higher accuracy in pinpointing substorm activity (the Midlatitude Positive Bay-index) will most likely be helpful in these efforts.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the peak GIC magnitudes observed from these observations during two large geomagnetic storms on 6 November 2001 and 2 October 2013 and found that there is a strong correlation between the magnitude of the GIC and the rate of change of the horizontal magnetic field (H′).
Abstract: Transpower New Zealand Limited has measured DC currents in transformer neutrals in the New Zealand electrical network at multiple South Island locations. Near-continuous archived DC current data exist since 2001, starting with 12 different substations and expanding from 2009 to include 17 substations. From 2001 to 2015 up to 58 individual transformers were simultaneously monitored. Primarily, the measurements were intended to monitor the impact of the high-voltage DC system linking the North and South Islands when it is operating in “Earth return” mode. However, after correcting for Earth return operation, as described here, the New Zealand measurements provide an unusually long and spatially detailed set of geomagnetically induced current (GIC) measurements. We examine the peak GIC magnitudes observed from these observations during two large geomagnetic storms on 6 November 2001 and 2 October 2013. Currents of ~30–50 A are observed, depending on the measurement location. There are large spatial variations in the GIC observations over comparatively small distances, which likely depend upon network layout and ground conductivity. We then go on to examine the GIC in transformers throughout the South Island during more than 151 h of geomagnetic storm conditions. We compare the GIC to the various magnitude and rate of change components of the magnetic field. Our results show that there is a strong correlation between the magnitude of the GIC and the rate of change of the horizontal magnetic field (H′). This correlation is particularly clear for transformers that show large GIC current during magnetic storms.

Journal ArticleDOI
TL;DR: In this article, numerical simulations of VLF chorus emissions based on the backward wave oscillator (BWO) model and compare them with THEMIS spacecraft data from the equatorial chorus source region on the early morning side at a radial distance of 6 Earth radii.
Abstract: We present results of numerical simulations of VLF chorus emissions based on the backward wave oscillator (BWO) model and compare them with THEMIS spacecraft data from the equatorial chorus source region on the early morning side at a radial distance of 6 Earth radii. Specific attention is paid to the choice of simulation parameters based on experimental data. We show that with known parameters of the geomagnetic field, plasma density, and the initial wave frequency, one can successfully reproduce individual chorus elements in the simulation. In particular, the measured growth rate, wave amplitude, and frequency drift rate are in agreement with observed values. The characteristic interval between the elements has a mismatch of factor 2. The agreement becomes perfect if we assume that the inhomogeneity scale of the magnetic field along the field line is half of that obtained from the T96 model. Such an assumption can be justified since the T96 model does not fit well for the time of chorus observations, and there is a shear in the observed field which indicates the presence of local currents.

Journal ArticleDOI
TL;DR: In this article, the authors simulated both St. Patrick's Day 2013 and 2015 events, analyzing LFM electric and magnetic fields to calculate radial diffusion coefficients, which were implemented in a radial diffusion code, using the measured electron phase space density following the local heating as the initial radial profile and outer boundary condition for subsequent temporal evolution over the next 12 days.
Abstract: The 17 March 2015 St. Patrick's Day Storm is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward IMF Bz causing loss, however a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. The 17 March 2013 storm also shows similar effects on outer zone electrons: first a rapid dropout due to inward motion of the magnetopause followed by rapid increase in flux above the pre-storm level early in the recovery phase and a slow increase over the next 12 days. These phases can be seen in temporal evolution of the electron phase space density measured by the ECT instruments on Van Allen Probes. Using the Lyon-Fedder-Mobarry global MHD model driven by upstream solar wind measurements, we simulated both St. Patrick's Day 2013 and 2015 events, analyzing LFM electric and magnetic fields to calculate radial diffusion coefficients. These coefficients have been implemented in a radial diffusion code, using the measured electron phase space density following the local heating as the initial radial profile and outer boundary condition for subsequent temporal evolution over the next 12 days, beginning 18 March. Agreement with electron phase space density at 1000 MeV/G measured by the MagEIS component of the ECT instrument suite on Van Allen Probes was much improved using radial diffusion coefficients from the MHD simulations relative to coefficients parametrized by a global geomagnetic activity index.

Journal ArticleDOI
TL;DR: In this article, the authors show that the magnetization carried by biogenic magnetite is acquired more efficiently than that carried by the nanoparticle inclusions, and they also show that there is no correlation between the concentrations of different magnetic components so that variable remanence acquisition efficiency will complicate RPI recording.
Abstract: Relative paleointensity (RPI) variations of Earth's magnetic field are widely used to understand geomagnetic field behavior and to develop age models for sedimentary sequences. RPI estimation is based on a series of assumptions. One key assumption that is rarely considered is that all magnetic particles in the sediment acquired a magnetization in an identical manner. In this paper, we test this assumption for sediments from the eastern equatorial Pacific Ocean that record well-documented global RPI variations over the last ∼780 kyr. The magnetization is carried by two stable single domain magnetic components, which we identify as magnetite magnetofossils and titanomagnetite nanoparticle inclusions within larger silicate particles. By analyzing signals carried by the two components separately, we determine for the first time that magnetic nanoparticle inclusions can cause their host particles to record reliable but inefficient sedimentary paleomagnetic signals. The magnetization carried by biogenic magnetite is acquired more efficiently than that carried by the nanoparticle inclusions. Variations in the concentration of both components are modulated climatically so that they record nearly identical RPI signals. In many sediment types, there is no correlation between the concentrations of different magnetic components so that variable remanence acquisition efficiency will complicate RPI recording. Our work demonstrates that detailed assessment of paleomagnetic recording by each constituent magnetic component needs to become a routine part of sedimentary RPI analysis.

Journal ArticleDOI
TL;DR: In this article, the South Atlantic Anomaly (SAA) is a region of weak geomagnetic field intensity at Earth's surface, which is commonly attributed to reversed flux patches (RFPs) on the core-mantle boundary (CMB).

Journal ArticleDOI
TL;DR: In this paper, the authors review the physics of the magnetosphere in the frame of space weather forecasting, focusing on recent results, current understanding, and an assessment of probable future developments, and argue that in fact it is the substorm phenomenon which contains the crucial physics, and therefore prediction of substorm occurrence, severity and duration, either within the context of a longerlasting geomagnetic storm, but potentially also as an isolated event, is of critical importance.
Abstract: The magnetosphere is the lens through which solar space weather phenomena are focused and directed towards the Earth. In particular, the non-linear interaction of the solar wind with the Earth’s magnetic field leads to the formation of highly inhomogenous electrical currents in the ionosphere which can ultimately result in damage to and problems with the operation of power distribution networks. Since electric power is the fundamental cornerstone of modern life, the interruption of power is the primary pathway by which space weather has impact on human activity and technology. Consequently, in the context of space weather, it is the ability to predict geomagnetic activity that is of key importance. This is usually stated in terms of geomagnetic storms, but we argue that in fact it is the substorm phenomenon which contains the crucial physics, and therefore prediction of substorm occurrence, severity and duration, either within the context of a longer-lasting geomagnetic storm, but potentially also as an isolated event, is of critical importance. Here we review the physics of the magnetosphere in the frame of space weather forecasting, focusing on recent results, current understanding, and an assessment of probable future developments.

Journal ArticleDOI
TL;DR: This study provides substantial data on variations in geomagnetic field intensity during the eighth to second centuries BCE Levant, thus significantly improving the existing record for this region and providing further evidence of extremely strong field in the late eighth century BCE (“geomagnetic spike”), and of rapid rates of change.
Abstract: Earth's magnetic field, one of the most enigmatic physical phenomena of the planet, is constantly changing on various time scales, from decades to millennia and longer. The reconstruction of geomagnetic field behavior in periods predating direct observations with modern instrumentation is based on geological and archaeological materials and has the twin challenges of (i) the accuracy of ancient paleomagnetic estimates and (ii) the dating of the archaeological material. Here we address the latter by using a set of storage jar handles (fired clay) stamped by royal seals as part of the ancient administrative system in Judah (Jerusalem and its vicinity). The typology of the stamp impressions, which corresponds to changes in the political entities ruling this area, provides excellent age constraints for the firing event of these artifacts. Together with rigorous paleomagnetic experimental procedures, this study yielded an unparalleled record of the geomagnetic field intensity during the eighth to second centuries BCE. The new record constitutes a substantial advance in our knowledge of past geomagnetic field variations in the southern Levant. Although it demonstrates a relatively stable and gradually declining field during the sixth to second centuries BCE, the new record provides further support for a short interval of extreme high values during the late eighth century BCE. The rate of change during this "geomagnetic spike" [defined as virtual axial dipole moment > 160 ZAm2 (1021 Am2)] is further constrained by the new data, which indicate an extremely rapid weakening of the field (losing ∼27% of its strength over ca. 30 y).