scispace - formally typeset
Search or ask a question
Topic

Earth's magnetic field

About: Earth's magnetic field is a research topic. Over the lifetime, 20360 publications have been published within this topic receiving 446747 citations. The topic is also known as: magnetic field of Earth & geomagnetic field.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the influence of geomagnetic activity on middle and low-latitude thermospheric winds and ionospheric electric fields is investigated using model results from the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model.
Abstract: [1] The influence of geomagnetic activity on middle- and low-latitude thermospheric winds and ionospheric electric fields is investigated using model results from the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model. Model runs are made for different levels of geomagnetic activity. Model results show that the equatorward ionospheric currents produced by disturbance winds develop positive charge accumulation at low latitudes that maximizes in the premidnight sector. The local time of maximum electric potential perturbation depends significantly on universal time so that the local time of reversal of the equatorial zonal perturbation electric field varies with longitude by 2 to 3 hours, depending on the intensity of geomagnetic activity. The westward perturbation electric field in the postsunset period indicates that stronger geomagnetic activity will produce a lower driven height of the evening F region. After geomagnetic activity ceases, model results show that the zonal disturbance winds can last for many days in the postrecovery period, while the meridional disturbance winds decay more rapidly. The long-lasting zonal winds, through the Pedersen currents they drive, help maintain meridional disturbance potential drops that decay much more slowly than the zonal disturbance potential drops after the activity ceases.

117 citations

Journal ArticleDOI
TL;DR: In this paper, phase space density functions of the form f(v) = A N /v n are fitted to statistical distributions of suprathermal electron fluxes (E = 0.213 −16.5 keV) from the CRRES satellite, parameterized by L-shell, Magnetic Local Time (MLT), and geomagnetic activity.
Abstract: In the present paper, phase space density functions of the form f(v) = A N /v n are fitted to statistical distributions of suprathermal electron fluxes (E = 0.213–16.5 keV) from the CRRES satellite, parameterized by L-shell, Magnetic Local Time (MLT), and geomagnetic activity. The fitted distributions are used in conjunction with ray tracing to calculate the Landau damping rates of an ensemble of rays representing whistler-mode chorus waves. The modeled propagation characteristics are compared with observations of chorus wave power from the CRRES satellite, as a function of L-shell, MLT, and magnetic latitude, in various frequency bands, and under various geomagnetic conditions. It is shown that the model results are remarkably consistent with many aspects of the observed wave distributions, including frequency, L-shell, MLT, and latitudinal dependence. In addition, the MLT distribution of wave power becomes characteristically asymmetric during active geomagnetic conditions, with small propagation lengths on the nightside which increase with MLT and maximize on the dayside. This asymmetry is shown to be directly related to the dynamics of the Landau resonant suprathermal electrons which drift around the Earth whilst undergoing scattering and loss due to a variety of plasma waves. Consequently, the suprathermal electrons play an important role in radiation belt dynamics, by controlling the distribution of chorus, which in turn contributes to the acceleration and loss of relativistic electrons in the recovery phase of storms.

117 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed two famous space weather events; a railway problem on 13-14 July 1982 and a power blackout on 30 October 2003, both of which occurred in Sweden during very intensive space weather storms and each of them a few years after the sunspot maximum.
Abstract: . In this paper, we analyse in detail two famous space weather events; a railway problem on 13–14 July 1982 and a power blackout on 30 October 2003. Both occurred in Sweden during very intensive space weather storms and each of them a few years after the sunspot maximum. This paper provides a description of the conditions on the Sun and in the solar wind leading to the two GIC events on the ground. By applying modelling techniques introduced and developed in our previous paper, we also calculate the horizontal geoelectric field at the Earth's surface in southern Sweden during the two storms as well as GIC flowing in the southern Swedish 400 kV power grid during the event in October 2003. The results from the calculations agree with all measured data available. In the July-1982 storm, the geomagnetic field variation, ΔBx, reached values up to ~2500 nT/min and the geoelectric field reached values in the order of several volts per kilometer. In the October-2003 storm, the geomagnetic field fluctuations were smaller. However, GIC of some hundreds of amperes flowed in the power grid during the October-2003 event. Technological issues related to the railway signalling in July 1982 and to the power network equipment in October 2003 are also discussed.

117 citations

Journal ArticleDOI
TL;DR: In this paper, the authors test the method of Lockwood et al. [1999] for deriving the coronal source flux from the geomagnetic aa index and show it to be accurate to within 12% for annual means and 4.5% for averages over a sunspot cycle.
Abstract: We test the method of Lockwood et al. [1999] for deriving the coronal source flux from the geomagnetic aa index and show it to be accurate to within 12% for annual means and 4.5% for averages over a sunspot cycle. Using data from four solar constant monitors during 1981-1995, we find a linear relationship between this magnetic flux and the total solar irradiance. From this correlation, we show that the 131% rise in the mean coronal source field over the interval 1901-1995 corresponds to a rise in the average total solar irradiance of {\Delta}I = 1.65 +/- 0.23 Wm^{-2}.

117 citations

Journal ArticleDOI
TL;DR: In this article, the effects of metamorphism upon magnetic mineralogy and magnetic properties of high-grade rocks, susceptibility-temperature relations and the Hopkinson effect, and petrologic sources of regional crustal magnetic anomalies are investigated.
Abstract: During the last 20 years, studies have been conducted regarding the regional, or long-wavelength, geomagnetic anomalies of the lower crust of the earth. The present paper is mainly concerned with the petrologic and geophysical interpretation of the observed features. Attention is given to magnetic mineralogy and magnetic properties of high-grade rocks from Lofoten and Vesteralen, regional geology and geophysics, field measurements and sampling, magnetic mineralogy of the lower crust, the effects of metamorphism upon magnetic mineralogy and magnetic properties of high-grade rocks, susceptibility-temperature relations and the Hopkinson effect, and petrologic sources of regional crustal magnetic anomalies.

117 citations


Network Information
Related Topics (5)
Solar wind
26.1K papers, 780.2K citations
92% related
Mantle (geology)
26.1K papers, 1.3M citations
86% related
Crust
20.7K papers, 933.1K citations
85% related
Subduction
22.4K papers, 1.1M citations
84% related
Atmosphere
30.8K papers, 737.8K citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023657
20221,202
2021477
2020553
2019604
2018581