scispace - formally typeset
Search or ask a question

Showing papers on "Ecosystem published in 2003"


Journal ArticleDOI
25 Sep 2003-Nature
TL;DR: It is found that oceanic absorption of CO2 from fossil fuels may result in larger pH changes over the next several centuries than any inferred from the geological record of the past 300 million years.
Abstract: The coming centuries may see more ocean acidification than the past 300 million years. Most carbon dioxide released into the atmosphere as a result of the burning of fossil fuels will eventually be absorbed by the ocean1, with potentially adverse consequences for marine biota2,3,4. Here we quantify the changes in ocean pH that may result from this continued release of CO2 and compare these with pH changes estimated from geological and historical records. We find that oceanic absorption of CO2 from fossil fuels may result in larger pH changes over the next several centuries than any inferred from the geological record of the past 300 million years, with the possible exception of those resulting from rare, extreme events such as bolide impacts or catastrophic methane hydrate degassing.

3,060 citations


Journal ArticleDOI
TL;DR: The LPJ model as mentioned in this paper combines process-based, large-scale representations of terrestrial vegetation dynamics and land-atmosphere carbon and water exchanges in a modular framework, including feedback through canopy conductance between photosynthesis and transpiration and interactive coupling between these 'fast' processes and other ecosystem processes.
Abstract: The Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) combines process-based, large-scale representations of terrestrial vegetation dynamics and land-atmosphere carbon and water exchanges in a modular framework. Features include feedback through canopy conductance between photosynthesis and transpiration and interactive coupling between these 'fast' processes and other ecosystem processes including resource competition, tissue turnover, population dynamics, soil organic matter and litter dynamics and fire disturbance. Ten plants functional types (PFTs) are differentiated by physiological, morphological, phenological, bioclimatic and fire-response attributes. Resource competition and differential responses to fire between PFTs influence their relative fractional cover from year to year. Photosynthesis, evapotranspiration and soil water dynamics are modelled on a daily time step, while vegetation structure and PFT population densities are updated annually. Simulations have been made over the industrial period both for specific sites where field measurements were available for model evaluation, and globally on a 0.5degrees x 0.5degrees grid. Modelled vegetation patterns are consistent with observations, including remotely sensed vegetation structure and phenology. Seasonal cycles of net ecosystem exchange and soil moisture compare well with local measurements. Global carbon exchange fields used as input to an atmospheric tracer transport model (TM2) provided a good fit to observed seasonal cycles of CO2 concentration at all latitudes. Simulated inter-annual variability of the global terrestrial carbon balance is in phase with and comparable in amplitude to observed variability in the growth rate of atmospheric CO2 . Global terrestrial carbon and water cycle parameters (pool sizes and fluxes) lie within their accepted ranges. The model is being used to study past, present and future terrestrial ecosystem dynamics, biochemical and biophysical interactions between ecosystems and the atmosphere, and as a component of coupled Earth system models.

2,735 citations


Journal ArticleDOI
TL;DR: This review examines how eutrophication influences the biomass and species composition of algae in both freshwater and costal marine systems and suggests that efforts to manage nutrient inputs to the seas will result in significant improvements in coastal zone water quality.
Abstract: Humans now strongly influence almost every major aquatic ecosystem, and their activities have dramatically altered the fluxes of growth-limiting nutrients from the landscape to receiving waters. Unfortunately, these nutrient inputs have had profound negative effects upon the quality of surface waters worldwide. This review examines how eutrophication influences the biomass and species composition of algae in both freshwater and costal marine systems. An overview of recent advances in algae-related eutrophication research is presented. In freshwater systems, a summary is presented for lakes and reservoirs; streams and rivers; and wetlands. A brief summary is also presented for estuarine and coastal marine ecosystems. Eutrophication causes predictable increases in the biomass of algae in lakes and reservoirs; streams and rivers; wetlands; and coastal marine ecosystems. As in lakes, the response of suspended algae in large rivers to changes in nutrient loading may be hysteretic in some cases. The inhibitory effects of high concentrations of inorganic suspended solids on algal growth, which can be very evident in many reservoirs receiving high inputs of suspended soils, also potentially may occur in turbid rivers. Consistent and predictable eutrophication-caused increases in cyanobacterial dominance of phytoplankton have been reported worldwide for natural lakes, and similar trends are reported here both for phytoplankton in turbid reservoirs, and for suspended algae in a large river. A remarkable unity is evident in the global response of algal biomass to nitrogen and phosphorus availability in lakes and reservoirs; wetlands; streams and rivers; and coastal marine waters. The species composition of algal communities inhabiting the water column appears to respond similarly to nutrient loading, whether in lakes, reservoirs, or rivers. As is true of freshwater ecosystems, the recent literature suggests that coastal marine ecosystems will respond positively to nutrient loading control efforts. Our understanding of freshwater eutrophication and its effects on algal-related water quality is strong and is advancing rapidly. However, our understanding of the effects of eutrophication on estuarine and coastal marine ecosystems is much more limited, and this gap represents an important future research need. Although coastal systems can be hydrologically complex, the biomass of marine phytoplankton nonetheless appears to respond sensitively and predictably to changes in the external supplies of nitrogen and phosphorus. These responses suggest that efforts to manage nutrient inputs to the seas will result in significant improvements in coastal zone water quality. Additional new efforts should be made to develop models that quantitatively link ecosystem-level responses to nutrient loading in both freshwater and marine systems.

1,816 citations


Journal ArticleDOI
TL;DR: This work has reviewed studies that compare pool sizes and flux rates of the major nutrient cycles in invaded and noninvaded systems for invasions of 56 species and suggests that invasive plant species frequently increase biomass and net primary production, increase N availability, alter N fixation rates, and produce litter with higher decomposition rates than co-occurring natives.
Abstract: Although it is generally acknowledged that invasions by exotic plant species represent a major threat to biodiversity and ecosystem stability, little attention has been paid to the potential impacts of these invasions on nutrient cycling processes in the soil. The literature on plant–soil interactions strongly suggests that the introduction of a new plant species, such as an invasive exotic, has the potential to change many components of the carbon (C), nitrogen (N), water, and other cycles of an ecosystem. I have reviewed studies that compare pool sizes and flux rates of the major nutrient cycles in invaded and noninvaded systems for invasions of 56 species. The available data suggest that invasive plant species frequently increase biomass and net primary production, increase N availability, alter N fixation rates, and produce litter with higher decomposition rates than co-occurring natives. However, the opposite patterns also occur, and patterns of difference between exotics and native species show no trends in some other components of nutrient cycles (for example, the size of soil pools of C and N). In some cases, a given species has different effects at different sites, suggesting that the composition of the invaded community and/or environmental factors such as soil type may determine the direction and magnitude of ecosystem-level impacts. Exotic plants alter soil nutrient dynamics by differing from native species in biomass and productivity, tissue chemistry, plant morphology, and phenology. Future research is needed to (a) experimentally test the patterns suggested by this data set; (b) examine fluxes and pools for which few data are available, including whole-site budgets; and (c) determine the magnitude of the difference in plant characteristics and in plant dominance within a community that is needed to alter ecosystem processes. Such research should be an integral component of the evaluation of the impacts of invasive species.

1,655 citations


Journal ArticleDOI
01 Aug 2003-Ecology
TL;DR: Evidence from a long-term field manipulation of plant diversity that soil microbial communities, and the key ecosystem processes that they mediate, are significantly altered by plant species richness is provided.
Abstract: A current debate in ecology centers on the extent to which ecosystem function depends on biodiversity. Here, we provide evidence from a long-term field manipulation of plant diversity that soil microbial communities, and the key ecosystem processes that they mediate, are significantly altered by plant species richness. After seven years of plant growth, we determined the composition and function of soil microbial communities beneath experimental plant diversity treatments containing 1-16 species. Microbial community bio- mass, respiration, and fungal abundance significantly increased with greater plant diversity, as did N mineralization rates. However, changes in microbial community biomass, activity, and composition largely resulted from the higher levels of plant production associated with greater diversity, rather than from plant diversity per se. Nonetheless, greater plant pro- duction could not explain more rapid N mineralization, indicating that plant diversity affected this microbial process, which controls rates of ecosystem N cycling. Greater N availability probably contributed to the positive relationship between plant diversity and productivity in the N-limited soils of our experiment, suggesting that plant-microbe in- teractions in soil are an integral component of plant diversity's influence on ecosystem

1,130 citations


Journal ArticleDOI
01 Sep 2003-Ecology
TL;DR: This paper identifies several mechanisms by which herbivores can indirectly affect decomposer organisms and soil processes through altering the quantity and quality of resources entering the soil and proposes that a variety of possible mechanisms is responsible for the idiosyncratic nature of herbivore effects on soil biota and ecosystem function.
Abstract: Understanding how terrestrial ecosystems function requires a combined aboveground–belowground approach, because of the importance of feedbacks that occur between herbivores, producers, and the decomposer subsystem. In this paper, we identify several mechanisms by which herbivores can indirectly affect decomposer organisms and soil processes through altering the quantity and quality of resources entering the soil. We show that these mechanisms are broadly similar in nature for both foliar and root herbivory, regardless of whether they operate in the short term as a result of physiological responses of individual plants to herbivore attack or long-term following alteration of plant community structure by herbivores and subsequent changes in the quality of litter inputs to soil. We propose that a variety of possible mechanisms is responsible for the idiosyncratic nature of herbivore effects on soil biota and ecosystem function; positive, negative, or neutral effects of herbivory are possible depending upon the balance of these different mechanisms. However, we predict that positive effects of herbivory on soil biota and soil processes are most common in ecosystems of high soil fertility and high consumption rates, whereas negative effects are most common in unproductive ecosystems with low consumption rates. The significance of multiple-species herbivore communities is also emphasized, and we propose that if resource use complementarity among herbivore species or functional groups leads to greater total consumption of phytomass, and thus greater net herbivory, then both positive and negative consequences of increasing herbivore diversity for belowground properties and processes are theoretically possible. Research priorities are highlighted and include a need for comparative studies of herbivore impacts on above- and belowground processes across ecosystems of varying productivity, as well as a need for experimental testing of the influence of antiherbivore defense compounds on complex multitrophic interactions in the rhizosphere and the significance of multiple herbivore species communities on these plant–soil interactions.

970 citations


Journal ArticleDOI
01 Apr 2003-Oikos
TL;DR: It is suggested that shell producers should not be neglected as a targets of conservation, restoration and habitat management.
Abstract: Mollusk shells are abundant, persistent, ubiquitous physical structures in aquatic habitats. Using an ecosystem engineering perspective, we identify general roles of mollusk shell production in aquatic ecosystems. Shells are substrata for attachment of epibionts, provide refuges from predation, physical or physiological stress, and control transport of solutes and particles in the benthic environment. Changes in availability of these resources caused by shell production have important consequences for other organisms. Colonization of shelled habitat depends on individual shell traits and spatial arrangement of shells, which determine access of organisms to resources and the degree to which biotic or abiotic forces are modulated. Shell production will increase species richness at the landscape level if shells create resources that are not otherwise available and species are present that use these resources. Changes in the availability of resources caused by shells and the resulting effects on other organisms have both positive and negative feedbacks to these engineers. Positive feedbacks appear to be most frequently mediated by changes in resource availability, whereas negative feedbacks appear to be most frequently mediated by organisms. Given the diversity of species that depend upon resources controlled by shells and rapid changes in global shell production that are occurring due to human activities, we suggest that shell producers should not be neglected as a targets of conservation, restoration and habitat management.

906 citations


Journal ArticleDOI
TL;DR: For example, this article found that soil and plant δ15N values systematically decreased with increasing mean annual precipitation (MAP) and decreasing mean annual temperature (MAT), suggesting a systematic change in the source of plant available N (organic/NH4+ versus NO3−) with climate.
Abstract: [1] We compiled new and published data on the natural abundance N isotope composition (δ15N values) of soil and plant organic matter from around the world. Across a broad range of climate and ecosystem types, we found that soil and plant δ15N values systematically decreased with increasing mean annual precipitation (MAP) and decreasing mean annual temperature (MAT). Because most undisturbed soils are near N steady state, the observations suggest that an increasing fraction of ecosystem N losses are 15N-depleted forms (NO3, N2O, etc.) with decreasing MAP and increasing MAT. Wetter and colder ecosystems appear to be more efficient in conserving and recycling mineral N. Globally, plant δ15N values are more negative than soils, but the difference (δ15Nplant-δ15Nsoil) increases with decreasing MAT (and secondarily increasing MAP), suggesting a systematic change in the source of plant-available N (organic/NH4+ versus NO3−) with climate. Nitrogen isotopes reflect time integrated measures of the controls on N storage that are critical for predictions of how these ecosystems will respond to human-mediated disturbances of the global N cycle.

883 citations


Journal ArticleDOI
TL;DR: This model shows that variation in dispersal rate affects the temporal mean and variability of ecosystem productivity strongly and nonmonotonically through two mechanisms: spatial averaging by the intermediate-type species that tends to dominate the landscape at high dispersal rates, and functional compensations between species that are made possible by the maintenance of species diversity.
Abstract: The potential consequences of biodiversity loss for ecosystem functioning and services at local scales have received considerable attention during the last decade, but little is known about how biodiversity affects ecosystem processes and stability at larger spatial scales. We propose that biodiversity provides spatial insurance for ecosystem functioning by virtue of spatial exchanges among local systems in heterogeneous landscapes. We explore this hypothesis by using a simple theoretical metacommunity model with explicit local consumer-resource dynamics and dispersal among systems. Our model shows that variation in dispersal rate affects the temporal mean and variability of ecosystem productivity strongly and nonmonotonically through two mechanisms: spatial averaging by the intermediate-type species that tends to dominate the landscape at high dispersal rates, and functional compensations between species that are made possible by the maintenance of species diversity. The spatial insurance effects of species diversity are highest at the intermediate dispersal rates that maximize local diversity. These results have profound implications for conservation and management. Knowledge of spatial processes across ecosystems is critical to predict the effects of landscape changes on both biodiversity and ecosystem functioning and services.

849 citations


Journal ArticleDOI
TL;DR: Current information suggests that a critical load of 5-10 kg ha (-1) year(-1) of total N deposition (both dry and wet deposition combined of all atmospheric N species) would protect the most vulnerable terrestrial ecosystems (heaths, bogs, cryptogams) and values of 10-20 kg ha-1 year-1 would protect forests, depending on soil conditions.

844 citations


Journal ArticleDOI
TL;DR: PrecipNet as mentioned in this paper is a new interdisciplinary research network assembled to encourage and foster communication and collaboration across research groups with common interests in the impacts of global change on precipitation regimes, ecosystem structure and function, and the human enterprise.
Abstract: Changes in Earth’s surface temperatures caused by anthropogenic emissions of greenhouse gases are expected to affect global and regional precipitation regimes. Interactions between changing precipitation regimes and other aspects of global change are likely to affect natural and managed terrestrial ecosystems as well as human society. Although much recent research has focused on assessing the responses of terrestrial ecosystems to rising carbon dioxide or temperature, relatively little research has focused on understanding how ecosystems respond to changes in precipitation regimes. Here we review predicted changes in global and regional precipitation regimes, outline the consequences of precipitation change for natural ecosystems and human activities, and discuss approaches to improving understanding of ecosystem responses to changing precipitation. Further, we introduce the Precipitation and Ecosystem Change Research Network (PrecipNet), a new interdisciplinary research network assembled to encourage and foster communication and collaboration across research groups with common interests in the impacts of global change on precipitation regimes, ecosystem structure and function, and the human enterprise.

Journal ArticleDOI
28 Nov 2003-Science
TL;DR: Biometric observations confirmed the net loss of carbon but imply that it is a transient effect of recent disturbance superimposed on long-term balance, likely that carbon sequestration is lower than has been inferred from recent eddy covariance studies at undisturbed sites.
Abstract: The net ecosystem exchange of carbon dioxide was measured by eddy covariance methods for 3 years in two old-growth forest sites near Santarem, Brazil. Carbon was lost in the wet season and gained in the dry season, which was opposite to the seasonal cycles of both tree growth and model predictions. The 3-year average carbon loss was 1.3 (confidence interval: 0.0 to 2.0) megagrams of carbon per hectare per year. Biometric observations confirmed the net loss but imply that it is a transient effect of recent disturbance superimposed on long-term balance. Given that episodic disturbances are characteristic of old-growth forests, it is likely that carbon sequestration is lower than has been inferred from recent eddy covariance studies at undisturbed sites.

Journal ArticleDOI
TL;DR: The present paper gives an overview about the possibilities to use bacterial and fungal populations as an indicator for soil quality and the applicability of nematodes for the determination of soil health.

Journal ArticleDOI
14 Aug 2003-Nature
TL;DR: There is evidence that climate warming is diminishing productivity in Lake Tanganyika, East Africa, and the impact of regional effects of global climate change on aquatic ecosystem functions and services can be larger than that of local anthropogenic activity or overfishing.
Abstract: Although the effects of climate warming on the chemical and physical properties of lakes have been documented, biotic and ecosystem-scale responses to climate change have been only estimated or predicted by manipulations and models. Here we present evidence that climate warming is diminishing productivity in Lake Tanganyika, East Africa. This lake has historically supported a highly productive pelagic fishery that currently provides 25-40% of the animal protein supply for the populations of the surrounding countries. In parallel with regional warming patterns since the beginning of the twentieth century, a rise in surface-water temperature has increased the stability of the water column. A regional decrease in wind velocity has contributed to reduced mixing, decreasing deep-water nutrient upwelling and entrainment into surface waters. Carbon isotope records in sediment cores suggest that primary productivity may have decreased by about 20%, implying a roughly 30% decrease in fish yields. Our study provides evidence that the impact of regional effects of global climate change on aquatic ecosystem functions and services can be larger than that of local anthropogenic activity or overfishing.

Journal ArticleDOI
TL;DR: Present static reserves should be complemented with dynamic reserves that are part of ecosystem management mimicking natural disturbance regimes at the landscape level, such as ecological fallows and dynamic successional reserves.
Abstract: In a world increasingly modified by human activities, the conservation of biodiversity is essential as insurance to maintain resilient ecosystems and ensure a sustainable flow of ecosystem goods and services to society. However, existing reserves and national parks are unlikely to incorporate the long-term and large-scale dynamics of ecosystems. Hence, conservation strategies have to actively incorporate the large areas of land that are managed for human use. For ecosystems to reorganize after large-scale natural and human-induced disturbances, spatial resilience in the form of ecological memory is a prerequisite. The ecological memory is composed of the species, interactions and structures that make ecosystem reorganization possible, and its components may be found within disturbed patches as well in the surrounding land-scape. Present static reserves should be complemented with dynamic reserves, such as ecological fallows and dynamic successional reserves, that are part of ecosystem management mimicking natural disturbance regimes at the landscape level.

Journal ArticleDOI
27 Nov 2003-Nature
TL;DR: It is shown that microbial biofilms changed the physical and chemical microhabitat and contributed to ecosystem processes in 30-m-long stream mesocosms by enhancing the relative uptake of organic molecules of lower bioavailability and changing their downstream linkage.
Abstract: In many aquatic ecosystems, most microbes live in matrix-enclosed biofilms and contribute substantially to energy flow and nutrient cycling. Little is known, however, about the coupling of structure and dynamics of these biofilms to ecosystem function. Here we show that microbial biofilms changed the physical and chemical microhabitat and contributed to ecosystem processes in 30-m-long stream mesocosms. Biofilm growth increased hydrodynamic transient storage-streamwater detained in quiescent zones, which is a major physical template for ecological processes in streams-by 300% and the retention of suspended particles by 120%. In addition, by enhancing the relative uptake of organic molecules of lower bioavailability, the interplay of biofilm microarchitecture and mass transfer changed their downstream linkage. As living zones of transient storage, biofilms bring hydrodynamic retention and biochemical processing into close spatial proximity and influence biogeochemical processes and patterns in streams. Thus, biofilms are highly efficient and successful ecological communities that may also contribute to the influence that headwater streams have on rivers, estuaries and even oceans through longitudinal linkages of local biogeochemical and hydrodynamic processes.

Journal ArticleDOI
TL;DR: It is concluded that the dominant species can provide short-term resistance to reductions in ecosystem function when species loss is nonrandom and the concurrent loss of complementary interactions among rare and uncommon species, the most diverse component of communities, may contribute to additional species loss and portends erosion of ecosystem function in the long term.
Abstract: Loss of species caused by widespread stressors, such as drought and fragmentation, is likely to be non-random depending on species abundance in the community. We experimentally reduced the number of rare and uncommon plant species while independently reducing only the abundance of dominant grass species in intact, native grassland. This allowed us to simulate a non-random pattern of species loss, based on species abundances, from communities shaped by natural ecological interactions and characterized by uneven species abundance distributions. Over two growing seasons, total above-ground net primary productivity (ANPP) declined with reductions in abundance of the dominant species but was unaffected by a threefold decline in richness of less common species. In contrast, productivity of the remaining rare and uncommon species decreased with declining richness, in part due to loss of complementary interactions among these species. However, increased production of the dominant grasses offset the negative effects of species loss. We conclude that the dominant species, as controllers of ecosystem function, can provide short-term resistance to reductions in ecosystem function when species loss is nonrandom. However, the concurrent loss of complementary interactions among rare and uncommon species, the most diverse component of communities, may contribute to additional species loss and portends erosion of ecosystem function in the long term.

Journal ArticleDOI
TL;DR: In this paper, the authors used the Keeling plot method to determine the carbon isotope composition of ecosystem respiration (d 13 CR) in order to better understand the processes controlling ecosystem isotope discrimination.
Abstract: [1] Photosynthesis and respiration impart distinct isotopic signatures to the atmosphere that are used to constrain global carbon source/sink estimates and partition ecosystem fluxes. Increasingly, the ‘‘Keeling plot’’ method is being used to determine the carbon isotope composition of ecosystem respiration (d 13 CR) in order to better understand the processes controlling ecosystem isotope discrimination. In this paper we synthesize emergent patterns in d 13 CR by analyzing 146 Keeling plots constructed at 33 sites across North and South America. In order to interpret results from disparate studies, we discuss the assumptions underlying the Keeling plot method and recommend standardized methods for determining d 13 CR. These include the use of regression calculations that account for error in the x variable, and constraining estimates of d 13 CR to nighttime periods. We then recalculate d 13 CR uniformly for all sites. We found a high degree of temporal and spatial variability in C3 ecosystems, with individual observations ranging from � 19.0 to � 32.6%. Mean C3 ecosystem discrimination was 18.3%. Precipitation was a major driver of both temporal and spatial variability of d 13 CR, suggesting (1) a large influence of recently fixed carbon on ecosystem respiration and (2) a significant effect of previous climatic effects on d 13 CR. These results illustrate the importance of water availability as a key control on atmospheric 13 CO2 and highlight the potential of d 13 CR as a useful tool for integrating environmental effects on dynamic canopy and ecosystem processes. INDEX TERMS: 0315 Atmospheric Composition and Structure: Biosphere/atmosphere interactions; 0322 Atmospheric Composition and Structure: Constituent sources and sinks; 1615 Global Change: Biogeochemical processes (4805); 1694 Global Change: Instruments and techniques; 3322 Meteorology and Atmospheric Dynamics: Land/atmosphere interactions; KEYWORDS: carbon cycle, carbon isotopes, ecosystem respiration, carbon dioxide, terrestrial ecosystems

Journal ArticleDOI
17 Apr 2003-Nature
TL;DR: Soil fauna from a series of secondary grassland succession stages selectively suppress early successional dominant plant species, thereby enhancing the relative abundance of subordinate species and also that of species from later succession stages.
Abstract: One of the most important areas in ecology is to elucidate the factors that drive succession in ecosystems and thus influence the diversity of species in natural vegetation. Significant mechanisms in this process are known to be resource limitation1,2,3 and the effects of aboveground vertebrate herbivores4,5. More recently, symbiotic and pathogenic soil microbes have been shown to exert a profound effect on the composition of vegetation6,7,8,9 and changes therein10,11. However, the influence of invertebrate soil fauna on succession has so far received little attention12,13. Here we report that invertebrate soil fauna might enhance both secondary succession and local plant species diversity. Soil fauna from a series of secondary grassland succession stages selectively suppress early successional dominant14 plant species, thereby enhancing the relative abundance of subordinate14 species and also that of species from later succession stages. Soil fauna from the mid-succession stage had the strongest effect. Our results clearly show that soil fauna strongly affects the composition of natural vegetation and we suggest that this knowledge might improve the restoration and conservation of plant species diversity.

Journal ArticleDOI
TL;DR: Attention to the linkages between fish and riparian systems is essential in efforts to rehabilitate degraded stream environments and to prevent further deterioration in freshwater fish populations in northern Australia.
Abstract: The relationship between freshwater fish and the integrity of the riparian zone is reviewed with special emphasis on the fauna of northern Australia. Linkages between freshwater fish and riparian zone processes are diverse and important. The riparian zone occurs at the interface between terrestrial and aquatic ecosystems and it may, therefore, regulate the transfer of energy and material between these systems, as well as regulating the transmission of solar energy into the aquatic ecosystem. Riparian influences on light quantity, quality and shade in streams are discussed and predictions are made about the likely impacts associated with changes in light quality. Increased rates of transfer of thermal energy between the atmosphere and the aquatic environment in the absence of an intact riparian zone may potentially disrupt reproduction by desynchronizing the thermal regimen from regional factors, such as the flow regimen, as well as having direct effects on mortality rates, body morphology, disease resistance and metabolic rates. Impacts associated with changes in light quality range from increased egg and larval mortality due to increased ultraviolet (UV) B irradiation and a decreased ability to discriminate between potential mates to increased conspicuousness to predators. Increased insolation and proliferation of exotic pasture grasses, an increasing threat in northern Australia, are shown to have a range of impacts, including changes in habitat structure, food-web structure and the facilitation of invasion by exotic fish species. The interception of terrestrial sediments and nutrients by the riparian zone has important consequences for stream fish, maintaining habitat structure, water clarity and food-web structure. Coarse organic matter donated to the aquatic environment by the riparian zones has a large range of influences on stream habitat, which, in turn, affect biodiversity and a range of process, such as fish reproduction and predation. Terrestrial matter is also consumed directly by fish and may be a very important source of energy in some Australian systems and under certain circumstances. Attention to the linkages between fish and riparian systems is essential in efforts to rehabilitate degraded stream environments and to prevent further deterioration in freshwater fish populations in northern Australia.

Journal Article
TL;DR: Based on a series of 1∵1000000maps of natural resources of China, 6 categories of ecological assets were divided, which included forest, grassland, farmland, wetland, water body and desert.
Abstract: Based on a series of1∶1000000maps of natural resources of China,6categories of ecological assets were divided,which included forest,grassland,farmland,wetland,water body and desert.By means of GIS,the1∶4000000Ecological Assets Map of Tibetan Plateau was compiled and the relative data were calculated.According to partial global ecosystem services value evaluation results obtained by Costanza et al.(1997)along with responses of ecological questionnaire s from specialists of China,this paper established the ecosystem services value unit area of Chinese terrestrial ecosystems.We used the ecological assets value table as a basis and also adjusted price value by biomass and then,the ecological assets value of the Tibetan Plateau was estimated.The results indicated that ecosystem services value of Tibetan Plateau is some 9363.9×10 8 yuan annually,accounting for17.68%of annual ecosystem services value of China and0.61%of the world.The value of soil formation and disposition provided by ecosys-tem s is the highest,which occupies19.3%of the total ecosystem services value and then,the value of waste treatment takes up16.8%,water conservation value,16.5%and biodiversity,16%.The forest and the grassland ecosystem s offered the main ecosystem services value,being31.3%and48.3%of the total value provided by different ecosystem types,respectively.

Journal ArticleDOI
TL;DR: It is argued that global environmental change can lead to the decline of essential links in functional groups providing pollination, seed dispersal, and pest control; the linking of previously disconnected areas; and the potential for existing links to become carriers of toxic substances, such as persistent organic compounds.
Abstract: Current natural resource management seldom takes the ecosystem functions performed by organisms that move between systems into consideration. Organisms that actively move in the landscape and connect habitats in space and time are here termed “mobile links.” They are essential components in the dynamics of ecosystem development and ecosystem resilience (that is, buffer capacity and opportunity for reorganization) that provide ecological memory (that is, sources for reorganization after disturbance). We investigated the effects of such mobile links on ecosystem functions in aquatic as well as terrestrial environments. We identify three main functional categories: resource, genetic, and process linkers and suggest that the diversity within functional groups of mobile links is a central component of ecosystem resilience. As the planet becomes increasingly dominated by humans, the magnitude, frequency, timing, spatial extent, rate, and quality of such organism-mediated linkages are being altered. We argue that global environmental change can lead to (a) the decline of essential links in functional groups providing pollination, seed dispersal, and pest control; (b) the linking of previously disconnected areas, for example, the spread of vector-borne diseases and invasive species; and (c) the potential for existing links to become carriers of toxic substances, such as persistent organic compounds. We conclude that knowledge of interspatial exchange via mobile links needs to be incorporated into management and policy-making decisions in order to maintain ecosystem resilience and hence secure the capacity of ecosystems to supply the goods and services essential to society.

Journal ArticleDOI
TL;DR: The dominant impacts of biodiversity change on ecosystem functioning appear to be trophically mediated, with important implications for conservation.
Abstract: Experiments testing biodiversity effects on ecosystem functioning have been criticized on the basis that their random-assembly designs do not reflect deterministic species loss in nature. Because previous studies, and their critics, have focused primarily on plants, however, it is underappreciated that the most consistent such determinism involves biased extinction of large consumers, skewing trophic structure and substantially changing conclusions about ecosystem impacts that assume changing plant diversity alone. Both demography and anthropogenic threats render large vertebrate consumers more vulnerable to extinction, on average, than plants. Importantly, species loss appears biased toward strong interactors among animals but weak interactors among plants. Accordingly, available evidence suggests that loss of a few predator species often has impacts comparable in magnitude to those stemming from a large reduction in plant diversity. Thus, the dominant impacts of biodiversity change on ecosystem functioning appear to be trophically mediated, with important implications for conservation.

Journal ArticleDOI
TL;DR: The multitude of recently published studies providing evidence for the ecological impacts of climate change on many different continents strongly suggests that the last 30 years of warmer temperatures have had a substantial influence on both seasonal patterns, and altitudinal and poleward shifts in vegetation.
Abstract: Climate is a major determinant for the phenology, physiology, distribution and interactions of plants. The world's recent climate has shown a substantial increase in average temperature which is changing these processes in a perceptible way. The following review compiles and discusses studies reporting recently observed changes in the behaviour, ranges and interactions of species which are thought to be associated with climate change. The multitude of recently published studies providing evidence for the ecological impacts of climate change on many different continents strongly suggests that the last 30 years of warmer temperatures have had a substantial influence on both seasonal patterns, and altitudinal and poleward shifts in vegetation. Common features of change, but also some discrepancies in the response of plants to climate change, are discussed, as well as implications for biodiversity, higher level impacts on community structure and trophic interactions, and some ecosystem consequences.

Journal ArticleDOI
TL;DR: This paper presents a study where biospheric flux data collected in the EUROFLUX project were used to train a neural network simulator to provide spatial and temporal estimates of carbon fluxes of European forests at continental scale.
Abstract: Recently flux tower data have become available for a variety of ecosystems under different climatic and edaphic conditions. Although Flux tower data represent point measurements with a footprint of typically 1 km × 1 km they can be used to validate models and to spatialize biospheric fluxes at regional and continental scales. In this paper we present a study where biospheric flux data collected in the EUROFLUX project were used to train a neural network simulator to provide spatial (1 km × 1 km) and temporal (weekly) estimates of carbon fluxes of European forests at continental scale. The novelty of the approach is that flux data were used to constrain and parameterize the neural network structure using a limited number of input driving variables. The overall European carbon uptake from this analysis was 0.47 Gt C yr−1 with distinctive differences between boreal and temperate regions. The length of the growing season is longer in the south of Europe (about 32 weeks), compared with north and central Europe, which have a similar length-growing season (about 27 weeks). A peak in respiration was depicted in spring at continental scale as a coherent signal which parallel the construction respiration increase at the onset of the season as usually shown by leaf level measurements.

Journal ArticleDOI
TL;DR: In this article, the authors focus on how bryophytes fix, intercept, transform, and/or release carbon (C) and nitrogen (N) cycles within and fluxes from ecosystems.
Abstract: management. How does our behavior (including urban development and land-use, water consumption, pollution) influence the movement of energy, water, and elements at local, regional, national or global scales? Will perturbations to chemical and energy cycles alter existing controls on ecosystem processes, and can we learn enough about them for effective regulation? Plants are critical in regulating biogeochemical cycles. Their growth controls the exchange of gases that support life in our current biosphere, and affects soil development. As primary producers, they influence the distribution of energy for higher trophic levels. Understanding how plants influence ecosystem processes requires a multidisciplinary approach drawing on plant physiology and biochemistry, community ecology, and biogeochemistry. Due to their unique physiology and ecology, bryophytes differ from vascular plants in influencing cycles of elements, energy, and water. For example, bryophytes have evolved an effective water relation system. Poikilohydry and desiccation tolerance allow bryophytes to tolerate longer periods of water stress than vascular plants, and to recover quickly with rehydration. With poorly developed conduction systems, water and solutes are taken up over the entire plant surface. Lack of both gametophyte stomata and effective cuticles in many species allows free exchange of solutions and gases across cell surfaces. Thus bryophytes often serve as effective traps for water and nutrients. This also makes them more sensitive to atmospheric chemical deposition than vascular plants. Bryophytes also can tolerate a wide range of temperatures and are found in almost all terrestrial and aquatic environments, including harsh Antarctic environments where vascular plant cover is low (cf. Fogg 1998; Seppelt 1995). Without roots, bryophytes can colonize hard substrates like rock and wood that are poor habitat for vascular species. Bryophytes stabilize soils and prevent the loss of soil and nutrients via erosion, particularly on sand dunes (Martinez & Maun 1999) and in cryptogamic soil crusts (Eldridge 1999; Evans & Johansen 1999). Cation exchange on Sphagnum cell walls releases protons, generating acidity that may inhibit plant and microbial growth (Clymo 1963; Craigie & Maass 1966; Spearing 1972). Finally, bryophytes influence ecosystem succession (Brock & Bregman 1989) through terrestrialization of water bodies, deposition of benthic organic matter or paludification of upland systems. Bryophyte colonization often precedes the establishment of tree surfaces by other canopy-dwelling plants (Nadkarni et al. 2000). Due to their physiology and life history traits, bryophytes influence ecosystem functions by producing organic matter, stabilizing soils or debris, trapping sediments and water, and providing food and habitat for algae, fungi, invertebrates, and amphibians. In this review, my objectives are to highlight several mechanisms by which bryophytes influence carbon (C) and nitrogen (N) cycles within and fluxes from ecosystems. As such, I will focus on how bryophytes fix, intercept, transform, and/or release C and N. My goals are to 1) introduce important processes controlling inputs and outputs of C and N in both terrestrial and aquatic ecosystems, 2) review work on the growth, decomposition, and leaching of bryophyte material, as well as biotic and abiotic controls on these mechanisms, and 3) suggest areas for future research that would advance our understanding of bryophytes in biogeochemical cycling. Current address: U.S. Geological Survey, 345 Middlefield Rd. MS 962, Menlo Park, CA 94025 U.S.A. e-mail: mturetsky@usgs.gov

Journal ArticleDOI
TL;DR: In this paper, the role of water-level fluctuations on the structure and function of shallow lakes is discussed and conclusions are presented from a workshop held at Balatonfured, Hungary in May 2002 on the Role of Water-Level Changes on the Structure and Function of Shallow Lake.
Abstract: Discussion and conclusions are presented from a workshop held at Balatonfured, Hungary in May 2002 on the role of water-level fluctuations on the structure and function of shallow lakes. Water-level regime is regarded to be an important factor for lake ecosystem functioning and affects conservation values. Biota, in particular those living in vegetated areas, respond differentially to changes in hydroperiod dynamics. Extreme water levels may cause shifts between the turbid and the clear, macrophyte-dominated state. Strong effects of anthropogenic changes in the fluctuation of water levels are shown for Mediterranean (Greece, Turkey) and north temperate (The Netherlands) regions. Additionally, effects of climate change are anticipated that might alter the functioning of shallow lakes in these regions differentially. There is a need for data on the relationships between water-level changes and ecosystem responses. A plea is made for international cooperation and information exchange and an internet site for facilitating this has been developed.

Journal ArticleDOI
TL;DR: Evidence does not support large regional threats due to un-speciated PM, though site-specific and constituent-specific effects can be readily identified and Interactions of PM with other pollutants and with components of climate change remain important areas of research in assessment of challenges to ecosystem stability.

Journal ArticleDOI
TL;DR: In this article, a dynamic global vegetation model (DGVM) was used to simulate biomass in grassy ecosystems in South Africa with and without fire and the results indicated that fire has a major effect under higher rainfall conditions suggesting an important role for fire/[CO2] interactions.
Abstract: The distribution and abundance of trees can be strongly affected by disturbance such as fire. In mixed tree/grass ecosystems, recurrent grass-fuelled fires can strongly suppress tree saplings and therefore control tree dominance. We propose that changes in atmospheric [CO2] could influence tree cover in such metastable ecosystems by altering their postburn recovery rates relative to flammable herbaceous growth forms such as grasses. Slow sapling recovery rates at low [CO2] would favour the spread of grasses and a reduction of tree cover. To test the possible importance of [CO2]/fire interactions, we first used a Dynamic Global Vegetation Model (DGVM) to simulate biomass in grassy ecosystems in South Africa with and without fire. The results indicate that fire has a major effect under higher rainfall conditions suggesting an important role for fire/[CO2] interactions. We then used a demographic model of the effects of fire on mesic savanna trees to test the importance of grass/tree differences in postburn recovery rates. We adjusted grass and tree growth in the model according to the DGVM output of net primary production at different [CO2] relative to current conditions. The simulations predicted elimination of trees at [CO2] typical of the last glacial period (180 ppm) because tree growth rate is too slow (15 years) to grow to a fire-proof size of ca. 3 m. Simulated grass growth would produce an adequate fuel load for a burn in only 2 years. Simulations of preindustrial [CO2] (270 ppm) predict occurrence of trees but at low densities. The greatest increase in trees occurs from preindustrial to current [CO2] (360 ppm). The simulations are consistent with palaeo-records which indicate that trees disappeared from sites that are currently savannas in South Africa in the last glacial. Savanna trees reappeared in the Holocene. There has also been a large increase in trees over the last 50–100 years. We suggest that slow tree recovery after fire, rather than differential photosynthetic efficiencies in C3 and C4 plants, might have been the significant factor in the Late Tertiary spread of flammable grasslands under low [CO2] because open, high light environments would have been a prerequisite for the spread of C4 grasses. Our simulations suggest further that low [CO2] could have been a significant factor in the reduction of trees during glacial times, because of their slower regrowth after disturbance, with fire favouring the spread of grasses.

Journal ArticleDOI
TL;DR: Altered rainfall regimes are likely to be an important element of climate change scenarios in this grassland, and the nature of interactions with other climate change elements remains a significant challenge for predicting ecosystem responses to climate change.
Abstract: Rainfall variability is a key driver of ecosystem structure and function in grasslands worldwide. Changes in rainfall patterns predicted by global climate models for the central United States are expected to cause lower and increasingly variable soil water availability, which may impact net primary production and plant species composition in native Great Plains grasslands. We experimentally altered the timing and quantity of growing season rainfall inputs by lengthening inter-rainfall dry intervals by 50%, reducing rainfall quantities by 30%, or both, compared to the ambient rainfall regime in a native tallgrass prairie ecosystem in northeastern Kansas. Over three growing seasons, increased rainfall variability caused by altered rainfall timing with no change in total rainfall quantity led to lower and more variable soil water content (0–30 cm depth), a ~10% reduction in aboveground net primary productivity (ANPP), increased root to shoot ratios, and greater canopy photon flux density at 30 cm above the soil surface. Lower total ANPP primarily resulted from reduced growth, biomass and flowering of subdominant warm-season C4 grasses while productivity of the dominant C4 grass Andropogon gerardii was relatively unresponsive. In general, vegetation responses to increased soil water content variability were at least equal to those caused by imposing a 30% reduction in rainfall quantity without altering the timing of rainfall inputs. Reduced ANPP most likely resulted from direct effects of soil moisture deficits on root activity, plant water status, and photosynthesis. Altered rainfall regimes are likely to be an important element of climate change scenarios in this grassland, and the nature of interactions with other climate change elements remains a significant challenge for predicting ecosystem responses to climate change.