scispace - formally typeset
Search or ask a question
Topic

Ecosystem

About: Ecosystem is a research topic. Over the lifetime, 25460 publications have been published within this topic receiving 1291375 citations. The topic is also known as: ecological system & Ecosystem.


Papers
More filters
Journal ArticleDOI
01 Oct 2010-Ecology
TL;DR: It is argued that the priming effect acts substantially in the carbon and nutrient cycles in all ecosystems, which could provide new insights on the responses of ecosystems to anthropogenic perturbations and their feedbacks to climatic changes.
Abstract: Understanding how ecosystems store or release carbon is one of ecology's greatest challenges in the 21st century. Organic matter covers a large range of chemical structures and qualities, and it is classically represented by pools of different recalcitrance to degradation. The interaction effects of these pools on carbon cycling are still poorly understood and are most often ignored in global-change models. Soil scientists have shown that inputs of labile organic matter frequently tend to increase, and often double, the mineralization of the more recalcitrant organic matter. The recent revival of interest for this phenomenon, named the priming effect, did not cross the frontiers of the disciplines. In particular, the priming effect phenomenon has been almost totally ignored by the scientific communities studying marine and continental aquatic ecosystems. Here we gather several arguments, experimental results, and field observations that strongly support the hypothesis that the priming effect is a general phenomenon that occurs in various terrestrial, freshwater, and marine ecosystems. For example, the increase in recalcitrant organic matter mineralization rate in the presence of labile organic matter ranged from 10% to 500% in six studies on organic matter degradation in aquatid ecosystems. Consequently, the recalcitrant organic matter mineralization rate may largely depend on labile organic matter availability, influencing the CO2 emissions of both aquatic and terrestrial ecosystems. We suggest that (1) recalcitrant organic matter may largely contribute to the CO2 emissions of aquatic ecosystems through the priming effect, and (2) priming effect intensity may be modified by global changes, interacting with eutrophication processes and atmospheric CO2 increases. Finally, we argue that the priming effect acts substantially in the carbon and nutrient cycles in all ecosystems. We outline exciting avenues for research, which could provide new insights on the responses of ecosystems to anthropogenic perturbations and their feedbacks to climatic changes.

419 citations

Journal ArticleDOI
Robin L. Chazdon1, Robin L. Chazdon2, Eben N. Broadbent3, Danaë M. A. Rozendaal2, Danaë M. A. Rozendaal4, Danaë M. A. Rozendaal5, Frans Bongers4, Angelica M. Almeyda Zambrano3, T. Mitchell Aide6, Patricia Balvanera7, Justin M. Becknell8, Vanessa K. Boukili2, Pedro H. S. Brancalion9, Dylan Craven10, Dylan Craven11, Jarcilene S. Almeida-Cortez12, George A. L. Cabral12, Ben de Jong, Julie S. Denslow13, Daisy H. Dent11, Daisy H. Dent14, Saara J. DeWalt15, Juan Manuel Dupuy, Sandra M. Durán16, Mário M. Espírito-Santo, María C. Fandiño, Ricardo Gomes César9, Jefferson S. Hall11, José Luis Hernández-Stefanoni, Catarina C. Jakovac4, Catarina C. Jakovac17, André Braga Junqueira4, André Braga Junqueira17, Deborah K. Kennard18, Susan G. Letcher19, Madelon Lohbeck4, Madelon Lohbeck20, Miguel Martínez-Ramos7, Paulo Eduardo dos Santos Massoca17, Jorge A. Meave7, Rita C. G. Mesquita17, Francisco Mora7, Rodrigo Muñoz7, Robert Muscarella21, Robert Muscarella22, Yule Roberta Ferreira Nunes, Susana Ochoa-Gaona, Edith Orihuela-Belmonte, Marielos Peña-Claros4, Eduardo A. Pérez-García7, Daniel Piotto, Jennifer S. Powers23, Jorge Rodríguez-Velázquez7, Isabel Eunice Romero-Pérez7, Jorge Ruiz24, Jorge Ruiz25, Juan Saldarriaga, Arturo Sanchez-Azofeifa16, Naomi B. Schwartz21, Marc K. Steininger26, Nathan G. Swenson26, María Uriarte21, Michiel van Breugel27, Michiel van Breugel28, Michiel van Breugel11, Hans van der Wal29, Hans van der Wal30, Maria das Dores Magalhães Veloso, Hans F. M. Vester, Ima Célia Guimarães Vieira31, Tony Vizcarra Bentos17, G. Bruce Williamson17, G. Bruce Williamson32, Lourens Poorter4 
TL;DR: This study estimates the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades to guide national-level forest-based carbon mitigation plans.
Abstract: Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km2 of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.

419 citations

Book
01 Jan 1988
TL;DR: Pelagic Nitrogen Cycling: Primary Productivity and Pelagic nitrogen cycling Pelagic primary production in nearshore waters Microfauna in Pelagic Food Chains Benthic Nitrogen cycling: BenthIC primary production and Oxygen Profiles Benthicity Nitrogen Fixation Amino Acids and Amines in Marine Particulate Material and Sediments Distribution and Metabolism of Quaternary Amines and Bacterial Production Nitrogen in Estuarine and Coastal Marine Sediments Nitrate Reduction and Denitrification in Marine Sediements.
Abstract: Pelagic Nitrogen Cycling: Primary Productivity and Pelagic Nitrogen Cycling Pelagic Primary Production in Nearshore Waters Microfauna in Pelagic Food Chains Benthic Nitrogen Cycling: Benthic Primary Production and Oxygen Profiles Benthic Nitrogen Fixation Amino Acids and Amines in Marine Particulate Material and Sediments Distribution and Metabolism of Quaternary Amines in Marine Sediments Benthic Mineralization and Bacterial Production Nitrogen in Benthic Food Chains Nitrification in Estuarine and Coastal Marine Sediments Nitrate Reduction and Denitrification in Marine Sediments Benthic Fauna and Biogeochemical Processes in Marine Sediements: The Role of Burrow Structures Benthic Fauna and Biogeochemical Processes in Marine Sediments: Microbial Activities and Fluxes Models of Nitrogen Cycling: Modelling Benthic Nitrogen Cycling in Temperate Coastal Ecosystems Nitrogen Models at the Community Level: Plant-Animal-Microbe Interactions Nitrogen Biogeochemistry and Modelling of Carmarthen Bay.

417 citations

Journal ArticleDOI
TL;DR: A leaky nitrostat model is proposed that is capable of resolving the paradox at scales of both ecosystems and individual N-fixing organisms.
Abstract: Observations of the tropical nitrogen (N) cycle over the past half century indicate that intact tropical forests tend to accumulate and recycle large quantities of N relative to temperate forests, as evidenced by plant and soil N to phosphorus (P) ratios, by P limitation of plant growth in some tropical forests, by an abundance of N-fixing plants, and by sustained export of bioavailable N at the ecosystem scale. However, this apparent up-regulation of the ecosystem N cycle introduces a biogeochemical paradox when considered from the perspective of physiology and evolution of individual plants: The putative source for tropical N richness—symbiotic N fixation—should, in theory, be physiologically down-regulated as internal pools of bioavailable N build. We review the evidence for tropical N richness and evaluate several hypotheses that may explain its emergence and maintenance. We propose a leaky nitrostat model that is capable of resolving the paradox at scales of both ecosystems and individual N-fixing organisms.

416 citations

Journal ArticleDOI
TL;DR: A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities.
Abstract: Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation.

416 citations


Network Information
Related Topics (5)
Biodiversity
44.8K papers, 1.9M citations
93% related
Species richness
61.6K papers, 2.1M citations
91% related
Vegetation
49.2K papers, 1.4M citations
90% related
Climate change
99.2K papers, 3.5M citations
89% related
Biological dispersal
30K papers, 1.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20235,630
202210,638
20212,059
20201,701
20191,681