scispace - formally typeset
Search or ask a question
Topic

Ecosystem

About: Ecosystem is a research topic. Over the lifetime, 25460 publications have been published within this topic receiving 1291375 citations. The topic is also known as: ecological system & Ecosystem.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the Century ecosystem model was used to explore the role of soil texture in belowground C storage, nutrient pool sizes, and fluxes in highly weathered soils in an Amazonian forest ecosystem.
Abstract: Soil texture plays a key role in belowground C storage in forest ecosystems and strongly influences nutrient availability and retention, particularly in highly weathered soils. We used field data and the Century ecosystem model to explore the role of soil texture in belowground C storage, nutrient pool sizes, and N fluxes in highly weathered soils in an Amazonian forest ecosystem. Our field results showed that sandy soils stored approximately 113 Mg C ha-1 to a 1-m depth versus 101 Mg C ha-1 in clay soils. Coarse root C represented a large and significant ecosystem C pool, amounting to 62% and 48% of the surface soil C pool on sands and clays, respectively, and 34% and 22% of the soil C pool on sands and clays to 1-m depth. The quantity of labile soil P, the soil C:N ratio, and live and dead fine root biomass in the 0–10-cm soil depth decreased along a gradient from sands to clays, whereas the opposite trend was observed for total P, mineral N, potential N mineralization, and denitrification enzyme activity. The Century model was able to predict the observed trends in surface soil C and N in loams and sands but underestimated C and N pools in the sands by approximately 45%. The model predicted that total belowground C (0–20 cm depth) in sands would be approximately half that of the clays, in contrast to the 89% we measured. This discrepancy is likely to be due to an underestimation of the role of belowground C allocation with low litter quality in sands, as well as an overestimation of the role of physical C protection by clays in this ecosystem. Changes in P and water availability had little effect on model outputs, whereas adding N greatly increased soil organic matter pools and productivity, illustrating the need for further integration of model structure and tropical forest biogeochemical cycling.

362 citations

Journal ArticleDOI
28 Jun 1996-Science
TL;DR: Analysis of stable carbon and nitrogen isotopes showed that this chemoautotrophic production is the food base for 48 species of cave-adapted terrestrial and aquatic invertebrates, 33 of which are endemic to this ecosystem.
Abstract: Microbial mats discovered in a ground-water ecosystem in southern Romania contain chemoautotrophic bacteria that fix inorganic carbon, using hydrogen sulfide as an energy source. Analysis of stable carbon and nitrogen isotopes showed that this chemoautotrophic production is the food base for 48 species of cave-adapted terrestrial and aquatic invertebrates, 33 of which are endemic to this ecosystem. This is the only cave ecosystem known to be supported by in situ autotrophic production, and it contains the only terrestrial community known to be chemoautotrophically based.

361 citations

Journal ArticleDOI
TL;DR: In this paper, the authors assessed advances in our knowledge of the beneficial influences of termites on ecosystem functioning and services and suggested that ecosystems services provided by termites are not sufficiently appreciated, especially in the context of longterm processes and possible biotechnologies derived from a detailed knowledge of their biology.

361 citations

Journal ArticleDOI
27 Jul 2001-Science
TL;DR: Research programs in U.S. desert shrubland and pinyon-juniper woodland have shown that some environmental perturbations can cause wholesale reorganization of ecosystems and other changes may be buffered because of the compensatory dynamics of complementary species.
Abstract: Studies that combine experimental manipulations with long-term data collection reveal elaborate interactions among species that affect the structure and dynamics of ecosystems. Research programs in U.S. desert shrubland and pinyon-juniper woodland have shown that (i) complex dynamics of species populations reflect interactions with other organisms and fluctuating climate; (ii) genotype x environment interactions affect responses of species to environmental change; (iii) herbivore-resistance traits of dominant plant species and impacts of "keystone" animal species cascade through the system to affect many organisms and ecosystem processes; and (iv) some environmental perturbations can cause wholesale reorganization of ecosystems because they exceed the ecological tolerances of dominant or keystone species, whereas other changes may be buffered because of the compensatory dynamics of complementary species.

361 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined temporal variability and controls on ecosystem metabolism by measuring daily rates continuously for 2 years in Walker Branch, a first-order deciduous forest stream.
Abstract: Headwater streams are key sites of nutrient and organic matter processing and retention, but little is known about temporal variability in gross primary production (GPP) and ecosystem respiration (ER) rates as a result of the short duration of most metabolism measurements in lotic ecosystems. We examined temporal variability and controls on ecosystem metabolism by measuring daily rates continuously for 2 years in Walker Branch, a first-order deciduous forest stream. Four important scales of temporal variability in ecosystem metabolism rates were identified: (1) seasonal, (2) day-to-day, (3) episodic (storm-related), and (4) inter-annual. Seasonal patterns were largely controlled by the leaf phenology and productivity of the deciduous riparian forest. Walker Branch was strongly net heterotrophic throughout the year with the exception of the open-canopy spring when GPP and ER rates were co-equal. Day-to-day variability in weather conditions influenced light reaching the streambed, resulting in high day-to-day variability in GPP particularly during spring (daily light levels explained 84% of the variance in daily GPP in April). Episodic storms depressed GPP for several days in spring, but increased GPP in autumn by removing leaves shading the streambed. Storms depressed ER initially, but then stimulated ER to 2–3 times pre-storm levels for several days. Walker Branch was strongly net heterotrophic in both years of the study, with annual GPP being similar (488 and 519 g O2 m−2 y−1 or 183 and 195 g C m−2 y−1) but annual ER being higher in 2004 than 2005 (−1,645 vs. −1,292 g O2 m−2 y−1 or −617 and −485 g C m−2 y−1). Inter-annual variability in ecosystem metabolism (assessed by comparing 2004 and 2005 rates with previous measurements) was the result of the storm frequency and timing and the size of the spring macroalgal bloom. Changes in local climate can have substantial impacts on stream ecosystem metabolism rates and ultimately influence the carbon source and sink properties of these important ecosystems.

360 citations


Network Information
Related Topics (5)
Biodiversity
44.8K papers, 1.9M citations
93% related
Species richness
61.6K papers, 2.1M citations
91% related
Vegetation
49.2K papers, 1.4M citations
90% related
Climate change
99.2K papers, 3.5M citations
89% related
Biological dispersal
30K papers, 1.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20235,630
202210,638
20212,059
20201,701
20191,681