scispace - formally typeset
Search or ask a question
Topic

Ecosystem

About: Ecosystem is a research topic. Over the lifetime, 25460 publications have been published within this topic receiving 1291375 citations. The topic is also known as: ecological system & Ecosystem.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors evaluated the major controls over soil organic carbon content, and to predict regional patterns of carbon in range and cultivated soils in the U.S. Central Plains Grasslands, and statistically analyzed relationships between C and soil texture and climate.
Abstract: Soil organic C content, a major source of system stability in agroecosystems, is controlled by many factors that have complex interactions. The purpose of this study was to evaluate the major controls over soil organic carbon content, and to predict regional patterns of carbon in range and cultivated soils. We obtained pedon and climate data for 500 rangeland and 300 cultivated soils in the U.S. Central Plains Grasslands, and statistically analyzed relationships between C and soil texture and climate. Regression models of the regional soils database indicated that organic C increased with precipitation and clay content, and decreased with temperature. Analysis of cultivated and rangeland soils indicated that C losses due to cultivation increased with precipitation, and that relative organic C losses are lowest in clay soils. Application of the regression models to a regional climate database showed potential soil organic matter losses to be highest in the northeastern section of the Central Plains Grasslands, decreasing generally from east to west. These statistical data analyses can be combined with more mechanistic models to evaluate controls of soil organic matter formation and turnover, and the implications for regional management. S ORGANIC MATTER is a major component of biogeochemical cycles of the major nutrient elements, and the quantity and quality of soil organic matter both reflect and control primary productivity. The amount of soil organic matter represents the balance of primary productivity and decomposition and as such is a sensitive and integrated measure of change in ecosystem function. Understanding the processes that control soil organic matter dynamics and their I.C. Burke, CM. Yonker, W.J. Parton, C.V. Cole and D.S. Schimel, Natural Resource Ecology Lab., Colorado State Univ., Fort Collins, CO 80523; and K. Flach, Agronomy Dep., Colorado State Univ., Fort Collins, CO 80523. Received 20 June 1988. 'Corresponding author. Published in Soil Sci. Soc. Am. J. 53:800-805 (1989). response to management is essential for informed use of agricultural land. Jenny (1980) describes four sets of state factors responsible for the formation of soil organic matter, and illustrates the influence of parent material, time, climate, and biota as individual controls over soil properties. Controls over soil organic matter properties may have complex interactions; separate analysis of such controls may limit useful predictions. Parton et al. (1988) illustrate the use of a mechanistic model in evaluating simultaneously changing controls. Although such models can be highly successful, field data are necessary to validate predictions across complex gradients. It is widely recognized that cultivation of grassland soils leads to depletion of soil organic matter (Alway, 1909; Russel, 1929; Hide and Metzger, 1939; Haas et al., 1957; and many others). Soil organic C losses of as much as 50% have been documented in the U.S. Central Plains Grasslands (Haas et al., 1957), with losses strongly dependent on management regime and regional location. The extent of soil organic matter depletion has been shown to depend upon the same variables as those controlling soil organic matter formation: climate (Haas et al., 1957; Honeycutt, 1986; Cole et al., 1989), soil texture (Tiessen et al., 1982; Schimel et al., 1985a), landscape position (Schimel et al., 1985a,b; Honeycutt, 1986; Yonker et al., 1988), and management regime (Janzen, 1987; Cole et al., 1988). An integrated assessment of soil organic matter losses across the U.S. Central Grasslands requires analysis of soils with varying temperature, precipitation, and soil physical properties. The objectives of this paper were threefold: (i) to establish quantitative relationships between native soil organic matter levels in the Central Plains Grasslands and key driving variables: precipitation, temperature, and soil texture; (ii) to develop predictions of cultivation induced soil organic carbon loss as a function BURKE ET AL.: TEXTURE, CLIMATE, AND CULTIVATION EFFECTS ON U.S. GRASSLAND SOILS 801 of climate and soil texture; and (iii) to use these predictions to map potential soil organic C depletion.

868 citations

Journal ArticleDOI
TL;DR: The results suggest that elevated N and P inputs lead to predictable shifts in the taxonomic and functional traits of soil microbial communities, including increases in the relative abundances of faster-growing, copiotrophic bacterial taxa, with these shifts likely to impact belowground ecosystems worldwide.
Abstract: Soil microorganisms are critical to ecosystem functioning and the maintenance of soil fertility. However, despite global increases in the inputs of nitrogen (N) and phosphorus (P) to ecosystems due to human activities, we lack a predictive understanding of how microbial communities respond to elevated nutrient inputs across environmental gradients. Here we used high-throughput sequencing of marker genes to elucidate the responses of soil fungal, archaeal, and bacterial communities using an N and P addition experiment replicated at 25 globally distributed grassland sites. We also sequenced metagenomes from a subset of the sites to determine how the functional attributes of bacterial communities change in response to elevated nutrients. Despite strong compositional differences across sites, microbial communities shifted in a consistent manner with N or P additions, and the magnitude of these shifts was related to the magnitude of plant community responses to nutrient inputs. Mycorrhizal fungi and methanogenic archaea decreased in relative abundance with nutrient additions, as did the relative abundances of oligotrophic bacterial taxa. The metagenomic data provided additional evidence for this shift in bacterial life history strategies because nutrient additions decreased the average genome sizes of the bacterial community members and elicited changes in the relative abundances of representative functional genes. Our results suggest that elevated N and P inputs lead to predictable shifts in the taxonomic and functional traits of soil microbial communities, including increases in the relative abundances of faster-growing, copiotrophic bacterial taxa, with these shifts likely to impact belowground ecosystems worldwide.

867 citations

Journal ArticleDOI
02 Apr 2009-Nature
TL;DR: It is found that the stability of the net ecosystem denitrification in the face of salinity stress was strongly influenced by the initial evenness of the community, therefore, when communities are highly uneven, or there is extreme dominance by one or a few species, their functioning is less resistant to environmental stress.
Abstract: Owing to the present global biodiversity crisis, the biodiversity-stability relationship and the effect of biodiversity on ecosystem functioning have become major topics in ecology. Biodiversity is a complex term that includes taxonomic, functional, spatial and temporal aspects of organismic diversity, with species richness (the number of species) and evenness (the relative abundance of species) considered among the most important measures. With few exceptions (see, for example, ref. 6), the majority of studies of biodiversity-functioning and biodiversity-stability theory have predominantly examined richness. Here we show, using microbial microcosms, that initial community evenness is a key factor in preserving the functional stability of an ecosystem. Using experimental manipulations of both richness and initial evenness in microcosms with denitrifying bacterial communities, we found that the stability of the net ecosystem denitrification in the face of salinity stress was strongly influenced by the initial evenness of the community. Therefore, when communities are highly uneven, or there is extreme dominance by one or a few species, their functioning is less resistant to environmental stress. Further unravelling how evenness influences ecosystem processes in natural and humanized environments constitutes a major future conceptual challenge.

866 citations

Journal ArticleDOI
08 Jul 2016-Science
TL;DR: It is shown that extreme warming of a temperate kelp forest off Australia resulted not only in its collapse, but also in a shift in community composition that brought about an increase in herbivorous tropical fishes that prevent the reestablishment of kelp.
Abstract: Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.

856 citations

Journal ArticleDOI
TL;DR: This model shows that variation in dispersal rate affects the temporal mean and variability of ecosystem productivity strongly and nonmonotonically through two mechanisms: spatial averaging by the intermediate-type species that tends to dominate the landscape at high dispersal rates, and functional compensations between species that are made possible by the maintenance of species diversity.
Abstract: The potential consequences of biodiversity loss for ecosystem functioning and services at local scales have received considerable attention during the last decade, but little is known about how biodiversity affects ecosystem processes and stability at larger spatial scales. We propose that biodiversity provides spatial insurance for ecosystem functioning by virtue of spatial exchanges among local systems in heterogeneous landscapes. We explore this hypothesis by using a simple theoretical metacommunity model with explicit local consumer-resource dynamics and dispersal among systems. Our model shows that variation in dispersal rate affects the temporal mean and variability of ecosystem productivity strongly and nonmonotonically through two mechanisms: spatial averaging by the intermediate-type species that tends to dominate the landscape at high dispersal rates, and functional compensations between species that are made possible by the maintenance of species diversity. The spatial insurance effects of species diversity are highest at the intermediate dispersal rates that maximize local diversity. These results have profound implications for conservation and management. Knowledge of spatial processes across ecosystems is critical to predict the effects of landscape changes on both biodiversity and ecosystem functioning and services.

849 citations


Network Information
Related Topics (5)
Biodiversity
44.8K papers, 1.9M citations
93% related
Species richness
61.6K papers, 2.1M citations
91% related
Vegetation
49.2K papers, 1.4M citations
90% related
Climate change
99.2K papers, 3.5M citations
89% related
Biological dispersal
30K papers, 1.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20235,630
202210,638
20212,059
20201,701
20191,681