scispace - formally typeset
Search or ask a question
Topic

Ecosystem

About: Ecosystem is a research topic. Over the lifetime, 25460 publications have been published within this topic receiving 1291375 citations. The topic is also known as: ecological system & Ecosystem.


Papers
More filters
Journal ArticleDOI
TL;DR: This study provides scientific evidence that the conservation of deep-sea biodiversity is a priority for a sustainable functioning of the worlds' oceans and suggests that mutually positive functional interactions can be common in the largest biome of the authors' biosphere.

598 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the Keeling plot method to determine the carbon isotope composition of ecosystem respiration (d 13 CR) in order to better understand the processes controlling ecosystem isotope discrimination.
Abstract: [1] Photosynthesis and respiration impart distinct isotopic signatures to the atmosphere that are used to constrain global carbon source/sink estimates and partition ecosystem fluxes. Increasingly, the ‘‘Keeling plot’’ method is being used to determine the carbon isotope composition of ecosystem respiration (d 13 CR) in order to better understand the processes controlling ecosystem isotope discrimination. In this paper we synthesize emergent patterns in d 13 CR by analyzing 146 Keeling plots constructed at 33 sites across North and South America. In order to interpret results from disparate studies, we discuss the assumptions underlying the Keeling plot method and recommend standardized methods for determining d 13 CR. These include the use of regression calculations that account for error in the x variable, and constraining estimates of d 13 CR to nighttime periods. We then recalculate d 13 CR uniformly for all sites. We found a high degree of temporal and spatial variability in C3 ecosystems, with individual observations ranging from � 19.0 to � 32.6%. Mean C3 ecosystem discrimination was 18.3%. Precipitation was a major driver of both temporal and spatial variability of d 13 CR, suggesting (1) a large influence of recently fixed carbon on ecosystem respiration and (2) a significant effect of previous climatic effects on d 13 CR. These results illustrate the importance of water availability as a key control on atmospheric 13 CO2 and highlight the potential of d 13 CR as a useful tool for integrating environmental effects on dynamic canopy and ecosystem processes. INDEX TERMS: 0315 Atmospheric Composition and Structure: Biosphere/atmosphere interactions; 0322 Atmospheric Composition and Structure: Constituent sources and sinks; 1615 Global Change: Biogeochemical processes (4805); 1694 Global Change: Instruments and techniques; 3322 Meteorology and Atmospheric Dynamics: Land/atmosphere interactions; KEYWORDS: carbon cycle, carbon isotopes, ecosystem respiration, carbon dioxide, terrestrial ecosystems

598 citations

Journal ArticleDOI
TL;DR: The behavior of ecosystems under stress can be shown to be analogous to Selye's characterization (1973, 1974) of the response of higher organisms to stress.
Abstract: The behavior of ecosystems under stress can be shown to be analogous to Selye's characterization (1973, 1974) of the response of higher organisms to stress. The ecosystem-level distress syndrome is manifest through changes in nutrient cycling, productivity, the size of dominant species, species diversity, and a shift in species dominance to opportunistic shorter-lived forms. These symptoms of ecosystem dysfunction are common in both terrestrial and aquatic systems under various stress impacts including harvesting, physical restructuring, pollutant discharges, introductions of exotic species, and extreme natural events (such as disastrous storms or volcanic activity). The progression of appearance of symptoms under intensifying stress levels may be interrupted temporarily as ecosystem homeostasis and homeorhetic mechanisms intercede. Inability to cope leads to further dysfunctions and, perhaps, to irreversible ecosystem breakdown.

597 citations

Journal ArticleDOI
TL;DR: This review examines selected papers containing soil enzyme data that could be used to distinguish enzyme sources and substrate specificity, at scales within and between major nutrient cycles.

596 citations

Journal ArticleDOI
TL;DR: The risk of irreversible ecosystem changes due to ocean acidification should enlighten the ongoing CO2 emissions debate and make it clear that the human dependence on fossil fuels must end quickly.
Abstract: Ocean acidification is rapidly changing the carbonate system of the world oceans. Past mass extinction events have been linked to ocean acidification, and the current rate of change in seawater chemistry is unprecedented. Evidence suggests that these changes will have significant consequences for marine taxa, particularly those that build skeletons, shells, and tests of biogenic calcium carbonate. Potential changes in species distributions and abundances could propagate through multiple trophic levels of marine food webs, though research into the long-term ecosystem impacts of ocean acidification is in its infancy. This review attempts to provide a general synthesis of known and/or hypothesized biological and ecosystem responses to increasing ocean acidification. Marine taxa covered in this review include tropical reef-building corals, cold-water corals, crustose coralline algae, Halimeda, benthic mollusks, echinoderms, coccolithophores, foraminifera, pteropods, seagrasses, jellyfishes, and fishes. The risk of irreversible ecosystem changes due to ocean acidification should enlighten the ongoing CO(2) emissions debate and make it clear that the human dependence on fossil fuels must end quickly. Political will and significant large-scale investment in clean-energy technologies are essential if we are to avoid the most damaging effects of human-induced climate change, including ocean acidification.

596 citations


Network Information
Related Topics (5)
Biodiversity
44.8K papers, 1.9M citations
93% related
Species richness
61.6K papers, 2.1M citations
91% related
Vegetation
49.2K papers, 1.4M citations
90% related
Climate change
99.2K papers, 3.5M citations
89% related
Biological dispersal
30K papers, 1.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20235,630
202210,638
20212,059
20201,701
20191,681