scispace - formally typeset
Search or ask a question
Topic

Ecosystem

About: Ecosystem is a research topic. Over the lifetime, 25460 publications have been published within this topic receiving 1291375 citations. The topic is also known as: ecological system & Ecosystem.


Papers
More filters
Journal ArticleDOI
01 Nov 2002-Oikos
TL;DR: Evaluating impacts of biodiversity loss on ecosystem function requires expanding the scope of current experimental research to multi-level food webs and understanding the distribution of interaction strengths within natural communities and how they change with community composition.
Abstract: Proposed links between biodiversity and ecosystem processes have generated intense interest and controversy in recent years. With few exceptions, however, empirical studies have focused on grassland plants and laboratory aquatic microbial systems, whereas there has been little attention to how changing animal diversity may influence ecosystem processes. Meanwhile, a separate research tradition has demonstrated strong top-down forcing in many systems, but has considered the role of diversity in these processes only tangentially. Integration of these research directions is necessary for more complete understanding in both areas. Several considerations suggest that changing diversity in multi-level food webs can have important ecosystem effects that can be qualitatively different than those mediated by plants. First, extinctions tend to be biased by trophic level: higher-level consumers are less diverse, less abundant, and under stronger anthropogenic pressure on average than wild plants, and thus face greater risk of extinction. Second, unlike plants, consumers often have impacts on ecosystems disproportionate to their abundance. Thus, an early consequence of declining diversity will often be skewed trophic structure, potentially reducing top-down influence. Third, where predators remain abundant, declining diversity at lower trophic levels may change effectiveness of predation and penetrance of trophic cascades by reducing trait diversity and the potential for compensation among species within a level. The mostly indirect evidence available provides some support for this prediction. Yet effects of changing animal diversity on functional processes have rarely been tested experimentally. Evaluating impacts of biodiversity loss on ecosystem function requires expanding the scope of current experimental research to multi-level food webs. A central challenge to doing so, and to evaluating the importance of trophic cascades specifically, is understanding the distribution of interaction strengths within natural communities and how they change with community composition. Although topology of most real food webs is extremely complex, it is not at all clear how much of this complexity translates to strong dynamic linkages that influence aggregate biomass and community composition. Finally, there is a need for more detailed data on patterns of species loss from real ecosystems (community “disassembly” rules).

575 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focused on the ecosystem regime shift in the North Sea that occurred during the period 1982-1988 and found that the evidence for the change is seen from individual species to key ecosystem parameters such as diversity and from phytoplankton to fish.

575 citations

Journal ArticleDOI
TL;DR: This overview summarizes the current state of knowledge of microbial transformations of nutrients in mangrove ecosystems and illustrates the important contributions these microorganisms make to the productivity of the ecosystems.
Abstract: Mangrove communities are recognized as highly productive ecosystems that provide large quantities of organic matter to adjacent coastal waters in the form of detritus and live animals (fish, shellfish). The detritus serves as a nutrient source and is the base of an extensive food web in which organisms of commercial importance take part. In addition, mangrove ecosystems serve as shelter, feeding, and breeding zones for crustaceans, mollusks, fish of commercial importance, and resident and migratory birds. Although mangroves in the United States are protected, the systematic destruction of these ecosystems elsewhere is increasing. Deforestation of mangrove communities is thought to be one of the major reasons for the decrease in the coastal fisheries of many tropical and subtropical countries. There is evidence to propose a close microbe-nutrient-plant relationship that functions as a mechanism to recycle and conserve nutrients in the mangrove ecosystem. The highly productive and diverse microbial community living in tropical and subtropical mangrove ecosystems continuously transforms nutrients from dead mangrove vegetation into sources of nitrogen, phosphorus, and other nutrients that can be used by the plants. In turn, plant-root exudates serve as a food source for the microorganisms living in the ecosystem with other plant material serving similarly for larger organisms like crabs. This overview summarizes the current state of knowledge of microbial transformations of nutrients in mangrove ecosystems and illustrates the important contributions these microorganisms make to the productivity of the ecosystems. To conserve the mangrove ecosystems, which are essential for the sustainable maintenance of coastal fisheries, maintenance and restoration of the microbial communities should be undertaken. Inoculation of mangrove seedlings with plant-growth-promoting bacteria may help revegetate degraded areas and create reconstructed mangrove ecosystems.

575 citations

Journal ArticleDOI
TL;DR: An improved understanding of what drives the diversity of life in the soil, incorporated within appropriate conceptual frameworks, should significantly aid the understanding of the structure and functioning of terrestrial communities.
Abstract: Belowground communities usually support a much greater diversity of organisms than do corresponding aboveground ones, and while the factors that regulate their diversity are far less well understood, a growing number of recent studies have presented data relevant to understanding how these factors operate. This review considers how biotic factors influence community diversity within major groups of soil organisms across a broad spectrum of spatial scales, and addresses the mechanisms involved. At the most local scale, soil biodiversity may potentially be affected by interactions within trophic levels or by direct trophic interactions. Within the soil, larger bodied invertebrates can also influence diversity of smaller sized organisms by promoting dispersal and through modification of the soil habitat. At larger scales, individual plant species effects, vegetation composition, plant species diversity, mixing of plant litter types, and aboveground trophic interactions, all impact on soil biodiversity. Further, at the landscape scale, soil diversity also responds to vegetation change and succession. This review also considers how a conceptual understanding of the biotic drivers of soil biodiversity may assist our knowledge of key topics in community and ecosystem ecology, such as aboveground-belowground interactions, and the relationship between biodiversity and ecosystem functioning. It is concluded that an improved understanding of what drives the diversity of life in the soil, incorporated within appropriate conceptual frameworks, should significantly aid our understanding of the structure and functioning of terrestrial communities.

575 citations

10 Aug 2016
TL;DR: In this paper, the authors used data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events, and found that biodiversity increased ecosystem resilience for a broad range of climate events.
Abstract: It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16–32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.

574 citations


Network Information
Related Topics (5)
Biodiversity
44.8K papers, 1.9M citations
93% related
Species richness
61.6K papers, 2.1M citations
91% related
Vegetation
49.2K papers, 1.4M citations
90% related
Climate change
99.2K papers, 3.5M citations
89% related
Biological dispersal
30K papers, 1.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20235,630
202210,638
20212,059
20201,701
20191,681