scispace - formally typeset
Search or ask a question
Topic

Ecosystem

About: Ecosystem is a research topic. Over the lifetime, 25460 publications have been published within this topic receiving 1291375 citations. The topic is also known as: ecological system & Ecosystem.


Papers
More filters
Journal ArticleDOI
TL;DR: A meta-analytic synthesis shows a significant overall effect of enemy richness increasing top-down control of herbivores, which is consistent in agricultural studies conducted in tropical versus temperate zones, in studies using caged versus open-field designs, but not so in nonagricultural habitats.
Abstract: Claims about the role of predator diversity in maintaining ecosystem function and providing ecosystem services such as pest control are controversial, but evaluative tests are beginning to accumulate. Empirical and experimental comparisons of species-rich versus species-poor assemblages of entomophagous arthropods and vertebrates range from strong suppression to facilitative release of herbivorous arthropod prey. Top-down control can be strengthened when natural enemies complement each other, dampened by negative interactions, balanced by both factors, and driven by single influential species. A meta-analytic synthesis shows a significant overall effect of enemy richness increasing top-down control of herbivores, which is consistent in agricultural studies conducted in tropical versus temperate zones, in studies using caged versus open-field designs, but not so in nonagricultural habitats. Synthetic analyses address theory and help set precautionary policy for conserving ecological services broadly, while characterizing uncertainty associated with herbivore response to changes in enemy diversity.

489 citations

Journal ArticleDOI
TL;DR: The dominant impacts of biodiversity change on ecosystem functioning appear to be trophically mediated, with important implications for conservation.
Abstract: Experiments testing biodiversity effects on ecosystem functioning have been criticized on the basis that their random-assembly designs do not reflect deterministic species loss in nature. Because previous studies, and their critics, have focused primarily on plants, however, it is underappreciated that the most consistent such determinism involves biased extinction of large consumers, skewing trophic structure and substantially changing conclusions about ecosystem impacts that assume changing plant diversity alone. Both demography and anthropogenic threats render large vertebrate consumers more vulnerable to extinction, on average, than plants. Importantly, species loss appears biased toward strong interactors among animals but weak interactors among plants. Accordingly, available evidence suggests that loss of a few predator species often has impacts comparable in magnitude to those stemming from a large reduction in plant diversity. Thus, the dominant impacts of biodiversity change on ecosystem functioning appear to be trophically mediated, with important implications for conservation.

488 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a multisite analysis of the relationship between plant diversity and ecosystem functioning within the European BIODEPTH network of plant-diversity manipulation experiments, showing that communities with a higher diversity of species and functional groups were more productive and utilized resources more completely by intercepting more light, taking up more nitrogen, and occupying more of the available space.
Abstract: We present a multisite analysis of the relationship between plant diversity and ecosystem functioning within the European BIODEPTH network of plant-diversity manipulation experiments. We report results of the analysis of 11 variables addressing several aspects of key ecosystem processes like biomass production, resource use (space, light, and nitrogen), and decomposition, measured across three years in plots of varying plant species richness at eight different European grassland field sites. Differences among sites explained substantial and significant amounts of the variation of most of the ecosystem processes examined. However, against this background of geographic variation, all the aspects of plant diversity and composition we examined (i.e., both numbers and types of species and functional groups) produced significant, mostly positive impacts on ecosystem processes. Analyses using the additive partitioning method revealed that complementarity effects (greater net yields than predicted from monocultures due to resource partitioning, positive interactions, etc.) were stronger and more consistent than selection effects (the covariance between monoculture yield and change in yield in mixtures) caused by dominance of species with particular traits. In general, communities with a higher diversity of species and functional groups were more productive and utilized resources more completely by intercepting more light, taking up more nitrogen, and occupying more of the available space. Diversity had significant effects through both increased vegetation cover and greater nitrogen retention by plants when this resource was more abundant through N2 fixation by legumes. However, additional positive diversity effects remained even after controlling for differences in vegetation cover and for the presence of legumes in communities. Diversity effects were stronger on above- than belowground processes. In particular, clear diversity effects on decomposition were only observed at one of the eight sites. The ecosystem effects of plant diversity also varied between sites and years. In general, diversity effects were lowest in the first year and stronger later in the experiment, indicating that they were not transitional due to community establishment. These analyses of our complete ecosystem process data set largely reinforce our previous results, and those from comparable biodiversity experiments, and extend the generality of diversity–ecosystem functioning relationships to multiple sites, years, and processes.

487 citations

Journal ArticleDOI
TL;DR: The multitude of recently published studies providing evidence for the ecological impacts of climate change on many different continents strongly suggests that the last 30 years of warmer temperatures have had a substantial influence on both seasonal patterns, and altitudinal and poleward shifts in vegetation.
Abstract: Climate is a major determinant for the phenology, physiology, distribution and interactions of plants. The world's recent climate has shown a substantial increase in average temperature which is changing these processes in a perceptible way. The following review compiles and discusses studies reporting recently observed changes in the behaviour, ranges and interactions of species which are thought to be associated with climate change. The multitude of recently published studies providing evidence for the ecological impacts of climate change on many different continents strongly suggests that the last 30 years of warmer temperatures have had a substantial influence on both seasonal patterns, and altitudinal and poleward shifts in vegetation. Common features of change, but also some discrepancies in the response of plants to climate change, are discussed, as well as implications for biodiversity, higher level impacts on community structure and trophic interactions, and some ecosystem consequences.

487 citations


Network Information
Related Topics (5)
Biodiversity
44.8K papers, 1.9M citations
93% related
Species richness
61.6K papers, 2.1M citations
91% related
Vegetation
49.2K papers, 1.4M citations
90% related
Climate change
99.2K papers, 3.5M citations
89% related
Biological dispersal
30K papers, 1.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20235,630
202210,638
20212,059
20201,701
20191,681