scispace - formally typeset
Search or ask a question
Topic

Edaphic

About: Edaphic is a research topic. Over the lifetime, 4229 publications have been published within this topic receiving 107277 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Bacterial diversity was highest in neutral soils and lower in acidic soils, with soils from the Peruvian Amazon the most acidic and least diverse in this study.
Abstract: For centuries, biologists have studied patterns of plant and animal diversity at continental scales. Until recently, similar studies were impossible for microorganisms, arguably the most diverse and abundant group of organisms on Earth. Here, we present a continental-scale description of soil bacterial communities and the environmental factors influencing their biodiversity. We collected 98 soil samples from across North and South America and used a ribosomal DNA-fingerprinting method to compare bacterial community composition and diversity quantitatively across sites. Bacterial diversity was unrelated to site temperature, latitude, and other variables that typically predict plant and animal diversity, and community composition was largely independent of geographic distance. The diversity and richness of soil bacterial communities differed by ecosystem type, and these differences could largely be explained by soil pH (r(2) = 0.70 and r(2) = 0.58, respectively; P < 0.0001 in both cases). Bacterial diversity was highest in neutral soils and lower in acidic soils, with soils from the Peruvian Amazon the most acidic and least diverse in our study. Our results suggest that microbial biogeography is controlled primarily by edaphic variables and differs fundamentally from the biogeography of "macro" organisms.

4,376 citations

Journal ArticleDOI
28 Nov 2014-Science
TL;DR: Diversity of most fungal groups peaked in tropical ecosystems, but ectomycorrhizal fungi and several fungal classes were most diverse in temperate or boreal ecosystems, and manyfungal groups exhibited distinct preferences for specific edaphic conditions (such as pH, calcium, or phosphorus).
Abstract: Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework.

2,346 citations

Journal ArticleDOI
TL;DR: Soil pH was the best predictor of bacterial community composition across this landscape while fungal community composition was most closely associated with changes in soil nutrient status, suggesting specific changes in edaphic properties, not necessarily land-use type itself, may best predict shifts in microbialcommunity composition across a given landscape.
Abstract: Land-use change can have significant impacts on soil conditions and microbial communities are likely to respond to these changes. However, such responses are poorly characterized as few studies have examined how specific changes in edaphic characteristics do, or do not, influence the composition of soil bacterial and fungal communities across land-use types. Soil samples were collected from four replicated ( n = 3) land-use types (hardwood and pine forests, cultivated and livestock pasture lands) in the southeastern US to assess the effects of land-use change on microbial community structure and distribution. We used quantitative PCR to estimate bacterial–fungal ratios and clone libraries targeting small-subunit rRNA genes to independently characterize the bacterial and fungal communities. Although some soil properties (soil texture and nutrient status) did significantly differ across land-use types, other edaphic factors (e.g., pH) did not vary consistently with land-use. Bacterial–fungal ratios were not significantly different across the land-uses and distinct land-use types did not necessarily harbor distinct soil fungal or bacterial communities. Rather, the composition of bacterial and fungal communities was most strongly correlated with specific soil properties. Soil pH was the best predictor of bacterial community composition across this landscape while fungal community composition was most closely associated with changes in soil nutrient status. Together these results suggest that specific changes in edaphic properties, not necessarily land-use type itself, may best predict shifts in microbial community composition across a given landscape. In addition, our results demonstrate the utility of using sequence-based approaches to concurrently analyze bacterial and fungal communities as such analyses provide detailed phylogenetic information on individual communities and permit the robust assessment of the biogeographical patterns exhibited by soil microbial communities.

1,420 citations

Journal ArticleDOI
TL;DR: In this paper, the Century ecosystem model was applied to a series of forest and grassland sites distributed globally to examine large-scale controls over soil carbon, including soil texture and foliar lignin content.
Abstract: Soil carbon, a major component of the global carbon inventory, has significant potential for change with changing climate and human land use. We applied the Century ecosystem model to a series of forest and grassland sites distributed globally to examine large-scale controls over soil carbon. Key site-specific parameters influencing soil carbon dynamics are soil texture and foliar lignin content; accordingly, we perturbed these variables at each site to establish a range of carbon concentrations and turnover times. We examined the simulated soil carbon stores, turnover times, and C:N ratios for correlations with patterns of independent variables. Results showed that soil carbon is related linearly to soil texture, increasing as clay content increases, that soil carbon stores and turnover time are related to mean annual temperature by negative exponential functions, and that heterotrophic respiration originates from recent detritus (∼50%), microbial turnover (∼30%), and soil organic matter (∼20%) with modest variations between forest and grassland ecosystems. The effect of changing temperature on soil organic carbon (SOC) estimated by Century is dSOC/dT= 183e−0.034T. Global extrapolation of this relationship leads to an estimated sensitivity of soil C storage to a temperature of −11.1 Pg° C−1, excluding extreme arid and organic soils. In Century, net primary production (NPP) and soil carbon are closely coupled through the N cycle, so that as temperatures increase, accelerated N release first results in fertilization responses, increasing C inputs. The Century-predicted effect of temperature on carbon storage is modified by as much as 100% by the N cycle feedback. Century-estimated soil C sensitivity (−11.1 Pg° C−1) is similar to losses predicted with a simple data-based calculation (−14.1 Pg° C−1). Inclusion of the N cycle is important for even first-order predictions of terrestrial carbon balance. If the NPP-SOC feedback is disrupted by land use or other disturbances, then SOC sensitivity can greatly exceed that estimated in our simulations. Century results further suggest that if climate change results in drying of organic soils (peats), soil carbon loss rates can be high.

1,016 citations

Journal ArticleDOI
TL;DR: The field-scale application of apparent soil electrical conductivity (EC"a) to agriculture has its origin in the measurement of soil salinity, which is an arid-zone problem associated with irrigated agricultural land and with areas having shallow water tables as mentioned in this paper.

861 citations


Network Information
Related Topics (5)
Vegetation
49.2K papers, 1.4M citations
89% related
Ecosystem
25.4K papers, 1.2M citations
88% related
Species diversity
32.2K papers, 1.2M citations
88% related
Species richness
61.6K papers, 2.1M citations
87% related
Biodiversity
44.8K papers, 1.9M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023284
2022604
2021309
2020281
2019249
2018216