scispace - formally typeset
Search or ask a question
Topic

Edge computing

About: Edge computing is a research topic. Over the lifetime, 11657 publications have been published within this topic receiving 148533 citations.


Papers
More filters
Proceedings ArticleDOI
06 Oct 2014
TL;DR: The goal is to demonstrate that cyber-foraging in tactical environments is possible by moving cloud computing concepts and technologies closer to the edge so that tactical cloudlets, even if disconnected from the enterprise, can provide capabilities that can lead to enhanced situational awareness and decision making at the edge.
Abstract: Soldiers and front-line personnel operating in tactical environments increasingly make use of handheld devices to help with tasks such as face recognition, language translation, decision-making, and mission planning. These resource constrained edge environments are characterized by dynamic context, limited computing resources, high levels of stress, and intermittent network connectivity. Cyber-foraging is the leverage of external resource-rich surrogates to augment the capabilities of resource-limited devices. In cloudlet-based cyber-foraging, resource-intensive computation and data is offloaded to cloudlets. Forward-deployed, discoverable, virtual-machine-based tactical cloudlets can be hosted on vehicles or other platforms to provide infrastructure to offload computation, provide forward data staging for a mission, perform data filtering to remove unnecessary data from streams intended for dismounted users, and serve as collection points for data heading for enterprise repositories. This paper describes tactical cloudlets and presents experimentation results for five different cloudlet provisioning mechanisms. The goal is to demonstrate that cyber-foraging in tactical environments is possible by moving cloud computing concepts and technologies closer to the edge so that tactical cloudlets, even if disconnected from the enterprise, can provide capabilities that can lead to enhanced situational awareness and decision making at the edge.

113 citations

Journal ArticleDOI
TL;DR: A novel offloading framework for the multi-server MEC network where each AP is equipped with an MES assisting mobile users (MUs) in executing computation-intensive jobs via offloading is proposed.
Abstract: Multi-access edge computing (MEC) has already shown great potential in enabling mobile devices to bear the computation-intensive applications by offloading some computing jobs to a nearby access point (AP) integrated with a MEC server (MES). However, due to the varying network conditions and limited computational resources of the MES, the offloading decisions taken by a mobile device and the computational resources allocated by the MES can be formulated as a mixed-integer nonlinear programming (MINLP) problem, which may not be optimized with the lowest cost. In this paper, we propose a novel offloading framework for the multi-server MEC network where each AP is equipped with an MES assisting mobile users (MUs) in executing computation-intensive jobs via offloading. Specifically, we formulate the offloading decision problem as a multiclass classification problem and formulate the MES computational resource allocation problem as a regression problem. Then a multi-task learning based feedforward neural network (MTFNN) model is designed and trained to jointly optimize the offloading decision and computational resource allocation. Numerical results show that the proposed MTFNN outperforms the conventional optimization method in terms of inference accuracy and computational complexity.

113 citations

Proceedings ArticleDOI
16 Mar 2018
TL;DR: A new hierarchical 5G Next generation VANET architecture is proposed to integrate the centralization and flexibility of Software Defined Networking and Cloud-RAN, with 5G communication technologies, to effectively allocate resources with a global view.
Abstract: The growth of technical revolution towards 5G Next generation networks is expected to meet various communication requirements of future Intelligent Transportation Systems (ITS). Motivated by the consumer needs for variety of ITS applications, bandwidth, high speed and ubiquity, researches are currently exploring different network architectures and techniques, which could be employed in Next generation ITS. To provide flexible network management, control and high resource utilization in Vehicular Ad-hoc Networks (VANETs) on large scale, a new hierarchical 5G Next generation VANET architecture is proposed. The key idea of this holistic architecture is to integrate the centralization and flexibility of Software Defined Networking (SDN) and Cloud-RAN (CRAN), with 5G communication technologies, to effectively allocate resources with a global view. Moreover, a fog computing framework (comprising of zones and clusters) has been proposed at the edge, to avoid frequent handovers between vehicles and RSUs. The transmission delay, throughput and control overhead on controller are analyzed and compared with other architectures. Simulation results indicate reduced transmission delay and minimized control overhead on controllers. Moreover, the throughput of proposed system is also improved.

112 citations

Journal ArticleDOI
TL;DR: In this article, a two-level resource allocation and incentive mechanism design problem is considered in the Hierarchical Federated Learning (HFL) framework, where cluster heads are designated to support the data owners through intermediate model aggregation.
Abstract: To enable the large scale and efficient deployment of Artificial Intelligence (AI), the confluence of AI and Edge Computing has given rise to Edge Intelligence, which leverages on the computation and communication capabilities of end devices and edge servers to process data closer to where it is produced. One of the enabling technologies of Edge Intelligence is the privacy preserving machine learning paradigm known as Federated Learning (FL), which enables data owners to conduct model training without having to transmit their raw data to third-party servers. However, the FL network is envisioned to involve thousands of heterogeneous distributed devices. As a result, communication inefficiency remains a key bottleneck. To reduce node failures and device dropouts, the Hierarchical Federated Learning (HFL) framework has been proposed whereby cluster heads are designated to support the data owners through intermediate model aggregation. This decentralized learning approach reduces the reliance on a central controller, e.g., the model owner. However, the issues of resource allocation and incentive design are not well-studied in the HFL framework. In this article, we consider a two-level resource allocation and incentive mechanism design problem. In the lower level, the cluster heads offer rewards in exchange for the data owners’ participation, and the data owners are free to choose which cluster to join. Specifically, we apply the evolutionary game theory to model the dynamics of the cluster selection process. In the upper level, each cluster head can choose to serve a model owner, whereas the model owners have to compete amongst each other for the services of the cluster heads. As such, we propose a deep learning based auction mechanism to derive the valuation of each cluster head's services. The performance evaluation shows the uniqueness and stability of our proposed evolutionary game, as well as the revenue maximizing properties of the deep learning based auction.

112 citations

Journal ArticleDOI
TL;DR: A graph-based algorithm is proposed that, taking into account a maximum MEC server capacity, provides a partition of MEC clusters, which consolidates as many communications as possible at the edge, and quantifies macroscopic MEC benefits.
Abstract: Mobile edge computing (MEC) is an emerging technology that aims at pushing applications and content close to the users (e.g., at base stations, access points, and aggregation networks) to reduce latency, improve quality of experience, and ensure highly efficient network operation and service delivery. It principally relies on virtualization-enabled MEC servers with limited capacity at the edge of the network. One key issue is to dimension such systems in terms of server size, server number, and server operation area to meet MEC goals. In this paper, we formulate this problem as a mixed integer linear program. We then propose a graph-based algorithm that, taking into account a maximum MEC server capacity, provides a partition of MEC clusters, which consolidates as many communications as possible at the edge. We use a dataset of mobile communications to extensively evaluate them with real world spatio-temporal human dynamics. In addition to quantifying macroscopic MEC benefits, the evaluation shows that our algorithm provides MEC area partitions that largely offload the core, thus pushing the load at the edge (e.g., with 10 small MEC servers between 55% and 64% of the traffic stay at the edge), and that are well balanced through time.

112 citations


Network Information
Related Topics (5)
Wireless sensor network
142K papers, 2.4M citations
93% related
Network packet
159.7K papers, 2.2M citations
93% related
Wireless network
122.5K papers, 2.1M citations
93% related
Server
79.5K papers, 1.4M citations
93% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,471
20223,274
20212,978
20203,397
20192,698
20181,649