scispace - formally typeset
Search or ask a question
Topic

Edge computing

About: Edge computing is a research topic. Over the lifetime, 11657 publications have been published within this topic receiving 148533 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel framework called HealthFog is proposed for integrating ensemble deep learning in Edge computing devices and deployed it for a real-life application of automatic Heart Disease analysis.

387 citations

Proceedings ArticleDOI
06 Jun 2017
TL;DR: A set of parameters are defined based on which one of these implementations can be chosen optimally given a particular use-case or application and a decision tree for the selection of the optimal implementation is presented.
Abstract: When it comes to storage and computation of large scales of data, Cloud Computing has acted as the de-facto solution over the past decade. However, with the massive growth in intelligent and mobile devices coupled with technologies like Internet of Things (IoT), V2X Communications, Augmented Reality (AR), the focus has shifted towards gaining real-time responses along with support for context-awareness and mobility. Due to the delays induced on the Wide Area Network (WAN) and location agnostic provisioning of resources on the cloud, there is a need to bring the features of the cloud closer to the consumer devices. This led to the birth of the Edge Computing paradigm which aims to provide context aware storage and distributed Computing at the edge of the networks. In this paper, we discuss the three different implementations of Edge Computing namely Fog Computing, Cloudlet and Mobile Edge Computing in detail and compare their features. We define a set of parameters based on which one of these implementations can be chosen optimally given a particular use-case or application and present a decision tree for the selection of the optimal implementation.

387 citations

Journal ArticleDOI
TL;DR: This survey will help the industry and research community synthesize and identify the requirements for Fog computing and present some open issues, which will determine the future research direction for the Fog computing paradigm.
Abstract: Emerging technologies such as the Internet of Things (IoT) require latency-aware computation for real-time application processing. In IoT environments, connected things generate a huge amount of data, which are generally referred to as big data. Data generated from IoT devices are generally processed in a cloud infrastructure because of the on-demand services and scalability features of the cloud computing paradigm. However, processing IoT application requests on the cloud exclusively is not an efficient solution for some IoT applications, especially time-sensitive ones. To address this issue, Fog computing, which resides in between cloud and IoT devices, was proposed. In general, in the Fog computing environment, IoT devices are connected to Fog devices. These Fog devices are located in close proximity to users and are responsible for intermediate computation and storage. One of the key challenges in running IoT applications in a Fog computing environment are resource allocation and task scheduling. Fog computing research is still in its infancy, and taxonomy-based investigation into the requirements of Fog infrastructure, platform, and applications mapped to current research is still required. This survey will help the industry and research community synthesize and identify the requirements for Fog computing. This paper starts with an overview of Fog computing in which the definition of Fog computing, research trends, and the technical differences between Fog and cloud are reviewed. Then, we investigate numerous proposed Fog computing architectures and describe the components of these architectures in detail. From this, the role of each component will be defined, which will help in the deployment of Fog computing. Next, a taxonomy of Fog computing is proposed by considering the requirements of the Fog computing paradigm. We also discuss existing research works and gaps in resource allocation and scheduling, fault tolerance, simulation tools, and Fog-based microservices. Finally, by addressing the limitations of current research works, we present some open issues, which will determine the future research direction for the Fog computing paradigm.

376 citations

Book ChapterDOI
01 Jan 2016
TL;DR: This chapter provides a background and motivations regarding the emergence of Fog computing, and defines its key characteristics, including a reference architecture for Fog computing.
Abstract: The Internet of Everything (IoE) solutions gradually bring every object online, and processing data in a centralized cloud does not scale to requirements of such an environment. This is because there are applications such as health monitoring and emergency response that require low latency, so delay caused by transferring data to the cloud and then back to the application can seriously impact the performance. To this end, Fog computing has emerged, where cloud computing is extended to the edge of the network to decrease the latency and network congestion. Fog computing is a paradigm for managing a highly distributed and possibly virtualized environment that provides compute and network services between sensors and cloud data centers. This chapter provides a background and motivations regarding the emergence of Fog computing, and defines its key characteristics. In addition, a reference architecture for Fog computing is presented, and recent related development and applications are discussed.

376 citations

Journal ArticleDOI
TL;DR: This paper comprehensively survey the body of existing research on I-IoT, and proposes a three-dimensional framework to explore the existing research space and investigate the adoption of some representative networking technologies, including 5G, machine-to-machine communication, and software-defined networking.
Abstract: The vision of Industry 4.0, otherwise known as the fourth industrial revolution, is the integration of massively deployed smart computing and network technologies in industrial production and manufacturing settings for the purposes of automation, reliability, and control, implicating the development of an Industrial Internet of Things (I-IoT). Specifically, I-IoT is devoted to adopting the IoT to enable the interconnection of anything, anywhere, and at any time in the manufacturing system context to improve the productivity, efficiency, safety, and intelligence. As an emerging technology, I-IoT has distinct properties and requirements that distinguish it from consumer IoT, including the unique types of smart devices incorporated, network technologies and quality-of-service requirements, and strict needs of command and control. To more clearly understand the complexities of I-IoT and its distinct needs and to present a unified assessment of the technology from a systems’ perspective, in this paper, we comprehensively survey the body of existing research on I-IoT. Particularly, we first present the I-IoT architecture, I-IoT applications (i.e., factory automation and process automation), and their characteristics. We then consider existing research efforts from the three key system aspects of control, networking, and computing. Regarding control, we first categorize industrial control systems and then present recent and relevant research efforts. Next, considering networking, we propose a three-dimensional framework to explore the existing research space and investigate the adoption of some representative networking technologies, including 5G, machine-to-machine communication, and software-defined networking. Similarly, concerning computing, we again propose a second three-dimensional framework that explores the problem space of computing in I-IoT and investigate the cloud, edge, and hybrid cloud and edge computing platforms. Finally, we outline particular challenges and future research needs in control, networking, and computing systems, as well as for the adoption of machine learning in an I-IoT context.

371 citations


Network Information
Related Topics (5)
Wireless sensor network
142K papers, 2.4M citations
93% related
Network packet
159.7K papers, 2.2M citations
93% related
Wireless network
122.5K papers, 2.1M citations
93% related
Server
79.5K papers, 1.4M citations
93% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,471
20223,274
20212,978
20203,397
20192,698
20181,649