scispace - formally typeset
Search or ask a question
Topic

Edge computing

About: Edge computing is a research topic. Over the lifetime, 11657 publications have been published within this topic receiving 148533 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper aims to provide a survey-based tutorial on potential applications and supporting technologies of Industry 5.0 from the perspective of different industry practitioners and researchers.

314 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a joint optimization framework for all the nodes, DSOs, and DSSs to achieve the optimal resource allocation schemes in a distributed fashion, where a Stackelberg game was formulated to analyze the pricing problem for the DSO and the resource allocation problem for DSS.
Abstract: Fog computing is a promising architecture to provide economical and low latency data services for future Internet of Things (IoT)-based network systems. Fog computing relies on a set of low-power fog nodes (FNs) that are located close to the end users to offload the services originally targeting at cloud data centers. In this paper, we consider a specific fog computing network consisting of a set of data service operators (DSOs) each of which controls a set of FNs to provide the required data service to a set of data service subscribers (DSSs). How to allocate the limited computing resources of FNs to all the DSSs to achieve an optimal and stable performance is an important problem. Therefore, we propose a joint optimization framework for all FNs, DSOs, and DSSs to achieve the optimal resource allocation schemes in a distributed fashion. In the framework, we first formulate a Stackelberg game to analyze the pricing problem for the DSOs as well as the resource allocation problem for the DSSs. Under the scenarios that the DSOs can know the expected amount of resource purchased by the DSSs, a many-to-many matching game is applied to investigate the pairing problem between DSOs and FNs. Finally, within the same DSO, we apply another layer of many-to-many matching between each of the paired FNs and serving DSSs to solve the FN-DSS pairing problem. Simulation results show that our proposed framework can significantly improve the performance of the IoT-based network systems.

312 citations

Journal ArticleDOI
TL;DR: In this paper, the problem of cloud-MEC collaborative computation offloading is studied, and two schemes are proposed as the solutions, i.e., an approximation collaborative offloading scheme, and a game-theoretic collaborative computation Offloading scheme.
Abstract: By offloading the computation tasks of the mobile devices (MDs) to the edge server, mobile-edge computing (MEC) provides a new paradigm to meet the increasing computation demands from mobile applications. However, existing mobile-edge computation offloading (MECO) research only took the resource allocation between the MDs and the MEC servers into consideration, and ignored the huge computation resources in the centralized cloud computing center. Moreover, current MEC hosted networks mostly adopt the networking technology integrating cellular and backbone networks, which have the shortcomings of single access mode, high congestion, high latency, and high energy consumption. Toward this end, we introduce hybrid fiber–wireless (FiWi) networks to provide supports for the coexistence of centralized cloud and multiaccess edge computing, and present an architecture by adopting the FiWi access networks. The problem of cloud-MEC collaborative computation offloading is studied, and two schemes are proposed as our solutions, i.e., an approximation collaborative computation offloading scheme, and a game-theoretic collaborative computation offloading scheme. Numerical results corroborate that our solutions not only achieve better offloading performance than the available MECO schemes but also scale well with the increasing number of computation tasks.

309 citations

Journal ArticleDOI
TL;DR: It can be said that MEC has definitely a window of opportunity to contribute to the creation of a common layer of integration for the IoT world and could pave the way and be natively integrated in the network of tomorrow.
Abstract: Mobile-Edge computing (MEC) is an emerging technology currently recognized as a key enabler for 5G networks. Compatible with current 4G networks, MEC will address many key uses of the 5G system, motivated by the massive diffusion of the Internet of Things (IoT). This article aims to provide a tutorial on MEC technology and an overview of the MEC framework and architecture recently defined by the European Telecommunications Standards Institute (ETSI) MEC Industry Specification Group (ISG) standardization organization. We provide some examples of MEC deployment, with special reference to IoT cases, since IoT is recognized as a main driver for 5G. Finally, we discuss the main benefits and challenges for MEC moving toward 5G.

308 citations

Journal ArticleDOI
TL;DR: Some typical application scenarios of edge computing in IIoT, such as prognostics and health management, smart grids, manufacturing coordination, intelligent connected vehicles (ICV), and smart logistics, are introduced.
Abstract: The Industrial Internet of Things (IIoT) is a crucial research field spawned by the Internet of Things (IoT). IIoT links all types of industrial equipment through the network; establishes data acquisition, exchange, and analysis systems; and optimizes processes and services, so as to reduce cost and enhance productivity. The introduction of edge computing in IIoT can significantly reduce the decision-making latency, save bandwidth resources, and to some extent, protect privacy. This paper outlines the research progress concerning edge computing in IIoT. First, the concepts of IIoT and edge computing are discussed, and subsequently, the research progress of edge computing is discussed and summarized in detail. Next, the future architecture from the perspective of edge computing in IIoT is proposed, and its technical progress in routing, task scheduling, data storage and analytics, security, and standardization is analyzed. Furthermore, we discuss the opportunities and challenges of edge computing in IIoT in terms of 5G-based edge communication, load balancing and data offloading, edge intelligence, as well as data sharing security. Finally, we introduce some typical application scenarios of edge computing in IIoT, such as prognostics and health management (PHM), smart grids, manufacturing coordination, intelligent connected vehicles (ICV), and smart logistics.

307 citations


Network Information
Related Topics (5)
Wireless sensor network
142K papers, 2.4M citations
93% related
Network packet
159.7K papers, 2.2M citations
93% related
Wireless network
122.5K papers, 2.1M citations
93% related
Server
79.5K papers, 1.4M citations
93% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,471
20223,274
20212,978
20203,397
20192,698
20181,649