scispace - formally typeset
Search or ask a question
Topic

Edge computing

About: Edge computing is a research topic. Over the lifetime, 11657 publications have been published within this topic receiving 148533 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a rule-based clustering algorithm is applied to cluster the patient health records and diabetic and cardio diseases are predicted using feature selection based adaptive neuro-fuzzy inference system (FS-ANFIS).
Abstract: Fog computing is a modern computing model which offers geographically dispersed end-users with the latency-aware and highly scalable services. It is comparatively safer than cloud computing, due to information being rapidly stored and evaluated closer to data sources on local fog nodes. The advent of Blockchain (BC) technology has become a remarkable, most revolutionary, and growing development in recent years. BT’s open platform stresses data protection and anonymity. It also guarantees data is protected and valid through the consensus process. BC is mainly used in money-related exchanges; now it will be used in many domains, including healthcare; This paper proposes efficient Blockchain-based secure healthcare services for disease prediction in fog computing. Diabetes and cardio diseases are considered for prediction. Initially, the patient health information is collected from Fog Nodes and stored on a Blockchain. The novel rule-based clustering algorithm is initially applied to cluster the patient health records. Finally, diabetic and cardio diseases are predicted using feature selection based adaptive neuro-fuzzy inference system (FS-ANFIS). To evaluate the performance of the proposed work, an extensive experiment and analysis were conducted on data from the real world healthcare. Purity and NMI metrics are used to analyze the performance of the rule based clustering and the accuracy is used for prediction performance. The experimental results show that the proposed work efficiently predicts the disease. The proposed work reaches more than 81% of prediction accuracy compared to the other neural network algorithms.

64 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors proposed a new algorithm in which blockchain assisted Compressed algoRithm of fEderated leArning is applied for conTent caching, called CREAT to predict cached files.
Abstract: Edge computing architectures can help us quickly process the data collected by Internet of Things (IoT) and caching files to edge nodes can speed up the response speed of IoT devices requesting files. Blockchain architectures can help us ensure the security of data transmitted by IoT. Therefore, we have proposed a system which combines IoT devices, edge nodes, remote cloud and blockchain. In the system, we designed a new algorithm in which blockchain-assisted Compressed algoRithm of fEderated leArning is applied for conTent caching, called CREAT to predict cached files. In CREAT algorithm, each edge node uses local data to train a model and then uses the model to learn the features of users and files, so as to predict popular files to improve cache hit rate. In order to ensure the security of edge nodes’ data, we use federated learning (FL) to enable multiple edge nodes to cooperate in training without sharing data. In addition, for the purpose of reducing communication load in FL, we will compress gradients uploaded by edge nodes to reduce the time required for communication. What’s more, in order to ensure the security of the data transmitted in CREAT algorithm, we have incorporated blockchain technology in the algorithm. We design four smart contracts for decentralized entities to record and verify the transactions to ensure the security of data. We used MovieLens data sets for experiments and we can see that CREAT greatly improves the cache hit rate and reduces the time required to upload data.

64 citations

Posted Content
TL;DR: In this paper, the authors present the key design requirements for enabling 6G through the use of a digital twin, and the architectural components and trends such as edge-based twins, cloud-based-twins, and edge-cloud-based twin are presented.
Abstract: Internet of Everything (IoE) applications such as haptics, human-computer interaction, and extended reality, using the sixth-generation (6G) of wireless systems have diverse requirements in terms of latency, reliability, data rate, and user-defined performance metrics. Therefore, enabling IoE applications over 6G requires a new framework that can be used to manage, operate, and optimize the 6G wireless system and its underlying IoE services. Such a new framework for 6G can be based on digital twins. Digital twins use a virtual representation of the 6G physical system along with the associated algorithms (e.g., machine learning, optimization), communication technologies (e.g., millimeter-wave and terahertz communication), computing systems (e.g., edge computing and cloud computing), as well as privacy and security-related technologists (e.g., blockchain). First, we present the key design requirements for enabling 6G through the use of a digital twin. Next, the architectural components and trends such as edge-based twins, cloud-based-twins, and edge-cloud-based twins are presented. Furthermore, we provide a comparative description of various twins. Finally, we outline and recommend guidelines for several future research directions.

64 citations

Proceedings ArticleDOI
04 Jun 2018
TL;DR: DeepCache, a deep-learning-based solution to understand the request patterns in individual base stations and accordingly make intelligent cache decisions is developed, and a cooperation strategy for nearby base stations to collectively serve user requests is developed.
Abstract: The emerging 5G mobile networking promises ultrahigh network bandwidth and ultra-low communication latency ( 100ms), due to its store-and-forward design and the physical barrier from signal propagation speed, not to mention congestion that frequently happens. Caching is known to be effective to bridge the speed gap, which has become a critical component in the 5G deployment as well. Besides storage, 5G base stations (BSs) will also be powered with strong computing modules, offering mobile edge computing (MEC) capability. This paper explores the potentials of edge computing towards improving the cache performance, and we envision a learning-based framework that facilitates smart caching beyond simple frequency- and time-based replace strategies and cooperation among base stations. Within this framework, we develop DeepCache, a deep-learning-based solution to understand the request patterns in individual base stations and accordingly make intelligent cache decisions. Using mobile video, one of the most popular applications with high traffic demand, as a case, we further develop a cooperation strategy for nearby base stations to collectively serve user requests. Experimental results on real-world dataset show that using the collaborative DeepCache algorithm, the overall transmission delay is reduced by 14%∼22%, with a backhaul data traffic saving of 15%∼23%.

64 citations

Journal ArticleDOI
TL;DR: This paper surveys the literature for cloud computing use with ITS and connected vehicles and provides taxonomies for that plus their use cases and identifies where further research is needed in order to enable vehicles and ITS to use edge cloud computing in a fully managed and automated way.
Abstract: Recent advances in smart connected vehicles and Intelligent Transportation Systems (ITS) are based upon the capture and processing of large amounts of sensor data. Modern vehicles contain many internal sensors to monitor a wide range of mechanical and electrical systems and the move to semi-autonomous vehicles adds outward looking sensors such as cameras, lidar, and radar. ITS is starting to connect existing sensors such as road cameras, traffic density sensors, traffic speed sensors, emergency vehicle, and public transport transponders. This disparate range of data is then processed to produce a fused situation awareness of the road network and used to provide real-time management, with much of the decision making automated. Road networks have quiet periods followed by peak traffic periods and cloud computing can provide a good solution for dealing with peaks by providing offloading of processing and scaling-up as required, but in some situations latency to traditional cloud data centres is too high or bandwidth is too constrained. Cloud computing at the edge of the network, close to the vehicle and ITS sensor, can provide a solution for latency and bandwidth constraints but the high mobility of vehicles and heterogeneity of infrastructure still needs to be addressed. This paper surveys the literature for cloud computing use with ITS and connected vehicles and provides taxonomies for that plus their use cases. We finish by identifying where further research is needed in order to enable vehicles and ITS to use edge cloud computing in a fully managed and automated way. We surveyed 496 papers covering a seven-year timespan with the first paper appearing in 2013 and ending at the conclusion of 2019.

64 citations


Network Information
Related Topics (5)
Wireless sensor network
142K papers, 2.4M citations
93% related
Network packet
159.7K papers, 2.2M citations
93% related
Wireless network
122.5K papers, 2.1M citations
93% related
Server
79.5K papers, 1.4M citations
93% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,471
20223,274
20212,978
20203,397
20192,698
20181,649