scispace - formally typeset
Search or ask a question
Topic

Edge computing

About: Edge computing is a research topic. Over the lifetime, 11657 publications have been published within this topic receiving 148533 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An in-depth analysis on the requirements of edge computing from the perspective of three selected use cases that are particularly interesting for harnessing the power of the Internet of Things and the applicability of two LV technologies, containers and unikernels, as platforms for enabling the scalability, security, and manageability required.
Abstract: Lightweight virtualization (LV) technologies have refashioned the world of software development by introducing flexibility and new ways of managing and distributing software. Edge computing complements today's powerful centralized data centers with a large number of distributed nodes that provide virtualization close to the data source and end users. This emerging paradigm offers ubiquitous processing capabilities on a wide range of heterogeneous hardware characterized by different processing power and energy availability. The scope of this article is to present an in-depth analysis on the requirements of edge computing from the perspective of three selected use cases that are particularly interesting for harnessing the power of the Internet of Things. We discuss and compare the applicability of two LV technologies, containers and unikernels, as platforms for enabling the scalability, security, and manageability required by such pervasive applications that soon may be part of our everyday lives. To inspire further research, we identify open problems and highlight future directions to serve as a road map for both industry and academia.

239 citations

Journal ArticleDOI
TL;DR: Several main issues in FLchain design are identified, including communication cost, resource allocation, incentive mechanism, security and privacy protection, and the applications of FLchain in popular MEC domains, such as edge data sharing, edge content caching and edge crowdsensing are investigated.
Abstract: Mobile-edge computing (MEC) has been envisioned as a promising paradigm to handle the massive volume of data generated from ubiquitous mobile devices for enabling intelligent services with the help of artificial intelligence (AI). Traditionally, AI techniques often require centralized data collection and training in a single entity, e.g., an MEC server, which is now becoming a weak point due to data privacy concerns and high overhead of raw data communications. In this context, federated learning (FL) has been proposed to provide collaborative data training solutions, by coordinating multiple mobile devices to train a shared AI model without directly exposing their underlying data, which enjoys considerable privacy enhancement. To improve the security and scalability of FL implementation, blockchain as a ledger technology is attractive for realizing decentralized FL training without the need for any central server. Particularly, the integration of FL and blockchain leads to a new paradigm, called FLchain , which potentially transforms intelligent MEC networks into decentralized, secure, and privacy-enhancing systems. This article presents an overview of the fundamental concepts and explores the opportunities of FLchain in MEC networks. We identify several main issues in FLchain design, including communication cost, resource allocation, incentive mechanism, security and privacy protection. The key solutions and the lessons learned along with the outlooks are also discussed. Then, we investigate the applications of FLchain in popular MEC domains, such as edge data sharing, edge content caching and edge crowdsensing. Finally, important research challenges and future directions are also highlighted.

238 citations

Journal ArticleDOI
TL;DR: A novel thoughtful decomposition based on the technique of the Logic-Based Benders Decomposition is designed, which solves a relaxed master, with fewer constraints, and a subproblem, whose resolution allows the generation of cuts which will, iteratively, guide the master to tighten its search space.
Abstract: Multi-access edge computing (MEC) has recently emerged as a novel paradigm to facilitate access to advanced computing capabilities at the edge of the network, in close proximity to end devices, thereby enabling a rich variety of latency sensitive services demanded by various emerging industry verticals. Internet-of-Things (IoT) devices, being highly ubiquitous and connected, can offload their computational tasks to be processed by applications hosted on the MEC servers due to their limited battery, computing, and storage capacities. Such IoT applications providing services to offloaded tasks of IoT devices are hosted on edge servers with limited computing capabilities. Given the heterogeneity in the requirements of the offloaded tasks (different computing requirements, latency, and so on) and limited MEC capabilities, we jointly decide on the task offloading (tasks to application assignment) and scheduling (order of executing them), which yields a challenging problem of combinatorial nature. Furthermore, we jointly decide on the computing resource allocation for the hosted applications, and we refer this problem as the Dynamic Task Offloading and Scheduling problem, encompassing the three subproblems mentioned earlier. We mathematically formulate this problem, and owing to its complexity, we design a novel thoughtful decomposition based on the technique of the Logic-Based Benders Decomposition. This technique solves a relaxed master, with fewer constraints, and a subproblem, whose resolution allows the generation of cuts which will, iteratively, guide the master to tighten its search space. Ultimately, both the master and the sub-problem will converge to yield the optimal solution. We show that this technique offers several order of magnitude (more than 140 times) improvements in the run time for the studied instances. One other advantage of this method is its capability of providing solutions with performance guarantees. Finally, we use this method to highlight the insightful performance trends for different vertical industries as a function of multiple system parameters with a focus on the delay-sensitive use cases.

238 citations

Journal ArticleDOI
TL;DR: A system model and dynamic schedules of data/control-constrained computing tasks are investigated, including the execution time and energy consumption for mobile devices, and NSGA-III (non-dominated sorting genetic algorithm III) is employed to address the multi-objective optimization problem of task offloading in cloud-edge computing.

237 citations

Journal ArticleDOI
TL;DR: This work adopts a deep Q-learning approach for designing optimal offloading schemes and proposes an efficient redundant offloading algorithm to improve task offloading reliability in the case of vehicular data transmission failure and evaluates the proposed schemes based on real traffic data.
Abstract: Led by industrialization of smart cities, numerous interconnected mobile devices, and novel applications have emerged in the urban environment, providing great opportunities to realize industrial automation. In this context, autonomous driving is an attractive issue, which leverages large amounts of sensory information for smart navigation while posing intensive computation demands on resource constrained vehicles. Mobile edge computing (MEC) is a potential solution to alleviate the heavy burden on the devices. However, varying states of multiple edge servers as well as a variety of vehicular offloading modes make efficient task offloading a challenge. To cope with this challenge, we adopt a deep Q-learning approach for designing optimal offloading schemes, jointly considering selection of target server and determination of data transmission mode. Furthermore, we propose an efficient redundant offloading algorithm to improve task offloading reliability in the case of vehicular data transmission failure. We evaluate the proposed schemes based on real traffic data. Results indicate that our offloading schemes have great advantages in optimizing system utilities and improving offloading reliability.

237 citations


Network Information
Related Topics (5)
Wireless sensor network
142K papers, 2.4M citations
93% related
Network packet
159.7K papers, 2.2M citations
93% related
Wireless network
122.5K papers, 2.1M citations
93% related
Server
79.5K papers, 1.4M citations
93% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,471
20223,274
20212,978
20203,397
20192,698
20181,649