scispace - formally typeset
Search or ask a question
Topic

Edge computing

About: Edge computing is a research topic. Over the lifetime, 11657 publications have been published within this topic receiving 148533 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper introduces FOGPLAN, a framework for QoS-aware dynamic fog service provisioning (QDFSP), and presents a possible formulation and two efficient greedy algorithms for addressing the QDFSP at one instance of time.
Abstract: Recent advances in the areas of Internet of Things (IoT), big data, and machine learning have contributed to the rise of a growing number of complex applications. These applications will be data-intensive, delay-sensitive, and real-time as smart devices prevail more in our daily life. Ensuring quality of service (QoS) for delay-sensitive applications is a must, and fog computing is seen as one of the primary enablers for satisfying such tight QoS requirements, as it puts compute, storage, and networking resources closer to the user. In this paper, we first introduce FOGPLAN, a framework for QoS-aware dynamic fog service provisioning (QDFSP). QDFSP concerns the dynamic deployment of application services on fog nodes, or the release of application services that have previously been deployed on fog nodes, in order to meet low latency and QoS requirements of applications while minimizing cost. FOGPLAN framework is practical and operates with no assumptions and minimal information about IoT nodes. Next, we present a possible formulation (as an optimization problem) and two efficient greedy algorithms for addressing the QDFSP at one instance of time. Finally, the FOGPLAN framework is evaluated using a simulation based on real-world traffic traces.

143 citations

Journal ArticleDOI
TL;DR: This article presents User-Level Online Offloading Framework (ULOOF), a lightweight and efficient framework for mobile computation offloading that can offload up to 73 percent of computations, and improve the execution time by 50 percent while at the same time significantly reducing the energy consumption of mobile devices.
Abstract: Mobile devices are equipped with limited processing power and battery charge. A mobile computation offloading framework is a software that provides better user experience in terms of computation time and energy consumption, also taking profit from edge computing facilities. This article presents User-Level Online Offloading Framework (ULOOF), a lightweight and efficient framework for mobile computation offloading. ULOOF is equipped with a decision engine that minimizes remote execution overhead, while not requiring any modification in the device’s operating system. By means of real experiments with Android systems and simulations using large-scale data from a major cellular network provider, we show that ULOOF can offload up to 73 percent of computations, and improve the execution time by 50 percent while at the same time significantly reducing the energy consumption of mobile devices.

143 citations

Journal ArticleDOI
TL;DR: A smart security framework for VANETs equipped with edge computing nodes and 5G technology has been designed to enhance the capabilities of communication and computation in the modern smart city environment.
Abstract: With the exponential growth of technologies such as IoT, edge computing, and 5G, a tremendous amount of structured and unstructured data is being generated from different applications in the smart citiy environment in recent years. Thus, there is a need to develop sophisticated techniques that can efficiently process such huge volumes of data. One of the important components of smart cities, ITS, has led to many applications, including surveillance, infotainment, real-time traffic monitoring, and so on. However, its security, performance, and availability are major concerns facing the research community. The existing solutions, such as cellular networks, RSUs, and mobile cloud computing, are far from perfect because these are highly dependent on centralized architecture and bear the cost of additional infrastructure deployment. Also, the conventional methods of data processing are not capable of handling dynamic and scalable data efficiently. To mitigate these issues, this article proposes an advanced vehicular communication technique where RSUs are proposed to be replaced by edge computing platforms. Then secure V2V and V2E communication is designed using the Quotient filter, a probabilistic data structure. In summary, a smart security framework for VANETs equipped with edge computing nodes and 5G technology has been designed to enhance the capabilities of communication and computation in the modern smart city environment. It has been experimentally demonstrated that use of edge nodes as an intermediate interface between vehicle and cloud reduces access latency and avoids congestion in the backbone network, which allows quick decisions to be made based on the traffic scenario in the geographical location of the vehicles. The proposed scheme outperforms the conventional vehicular models by providing an energy-efficient secure system with minimum delay.

143 citations

Journal ArticleDOI
TL;DR: A multi-agent deep reinforcement learning based trajectory control algorithm is proposed for managing the trajectory of each UAV independently, where the popular Multi-Agent Deep Deterministic Policy Gradient (MADDPG) method is applied.
Abstract: An unmanned aerial vehicle (UAV)-aided mobile edge computing (MEC) framework is proposed, where several UAVs having different trajectories fly over the target area and support the user equipments (UEs) on the ground. We aim to jointly optimize the geographical fairness among all the UEs, the fairness of each UAV’ UE-load and the overall energy consumption of UEs. The above optimization problem includes both integer and continues variables and it is challenging to solve. To address the above problem, a multi-agent deep reinforcement learning based trajectory control algorithm is proposed for managing the trajectory of each UAV independently, where the popular Multi-Agent Deep Deterministic Policy Gradient (MADDPG) method is applied. Given the UAVs’ trajectories, a low-complexity approach is introduced for optimizing the offloading decisions of UEs. We show that our proposed solution has considerable performance over other traditional algorithms, both in terms of the fairness for serving UEs, fairness of UE-load at each UAV and energy consumption for all the UEs.

143 citations

Journal ArticleDOI
TL;DR: This paper designs two computation offloading algorithms that can quantify their efficiencies in terms of low delay and reduced complexity and formulate the interactions among cloud service operator and edge server owners as a Stackelberg game to maximize the utilities of cloud service operators and edgeServer owners by obtaining the optimal payment and computation offload strategies.

142 citations


Network Information
Related Topics (5)
Wireless sensor network
142K papers, 2.4M citations
93% related
Network packet
159.7K papers, 2.2M citations
93% related
Wireless network
122.5K papers, 2.1M citations
93% related
Server
79.5K papers, 1.4M citations
93% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,471
20223,274
20212,978
20203,397
20192,698
20181,649