scispace - formally typeset
Topic

Edge enhancement

About: Edge enhancement is a(n) research topic. Over the lifetime, 2324 publication(s) have been published within this topic receiving 30962 citation(s).


Papers
More filters
01 Jan 1998
TL;DR: An overview of research in edge detection is proposed: edge definition, properties of detectors, the methodology of edge detection, the mutual influence between edges and detectors, and existing edge detectors and their implementation.
Abstract: In computer vision and image processing, edge detection concerns the localization of significant variations of the grey level image and the identification of the physical phenomena that originated them. This information is very useful for applications in 3D reconstruction, motion, recognition, image enhancement and restoration, image registration, image compression, and so on. Usually, edge detection requires smoothing and differentiation of the image. Differentiation is an ill-conditioned problem and smoothing results in a loss of information. It is difficult to design a general edge detection algorithm which performs well in many contexts and captures the requirements of subsequent processing stages. Consequently, over the history of digital image processing a variety of edge detectors have been devised which differ in their mathematical and algorithmic properties. This paper is an account of the current state of our understanding of edge detection. We propose an overview of research in edge detection: edge definition, properties of detectors, the methodology of edge detection, the mutual influence between edges and detectors, and existing edge detectors and their implementation.

786 citations

Proceedings ArticleDOI
01 Sep 1990
TL;DR: A new rendering technique is proposed that produces 3-D images with enhanced visual comprehensibility and artificial enhancement processes are separated from geometric processes (projection and hidden surface removal) and physical processes (shading and texture mapping), and performed as postprocesses.
Abstract: We propose a new rendering technique that produces 3-D images with enhanced visual comprehensibility. Shape features can be readily understood if certain geometric properties are enhanced. To achieve this, we develop drawing algorithms for discontinuities, edges, contour lines, and curved hatching. All of them are realized with 2-D image processing operations instead of line tracking processes, so that they can be efficiently combined with conventional surface rendering algorithms.Data about the geometric properties of the surfaces are preserved as Geometric Buffers (G-buffers). Each G-buffer contains one geometric property such as the depth or the normal vector of each pixel. By using G-buffers as intermediate results, artificial enhancement processes are separated from geometric processes (projection and hidden surface removal) and physical processes (shading and texture mapping), and performed as postprocesses. This permits a user to rapidly examine various combinations of enhancement techniques without excessive recomputation, and easily obtain the most comprehensible image.Our method can be widely applied for various purposes. Several of these, edge enhancement, line drawing illustrations, topographical maps, medical imaging, and surface analysis, are presented in this paper.

730 citations

Journal ArticleDOI
TL;DR: A new method for unsharp masking for contrast enhancement of images is presented that employs an adaptive filter that controls the contribution of the sharpening path in such a way that contrast enhancement occurs in high detail areas and little or no image sharpening occurs in smooth areas.
Abstract: This paper presents a new method for unsharp masking for contrast enhancement of images. The approach employs an adaptive filter that controls the contribution of the sharpening path in such a way that contrast enhancement occurs in high detail areas and little or no image sharpening occurs in smooth areas.

684 citations

Journal ArticleDOI
TL;DR: An automatic transformation technique that improves the brightness of dimmed images via the gamma correction and probability distribution of luminance pixels and uses temporal information regarding the differences between each frame to reduce computational complexity is presented.
Abstract: This paper proposes an efficient method to modify histograms and enhance contrast in digital images. Enhancement plays a significant role in digital image processing, computer vision, and pattern recognition. We present an automatic transformation technique that improves the brightness of dimmed images via the gamma correction and probability distribution of luminance pixels. To enhance video, the proposed image-enhancement method uses temporal information regarding the differences between each frame to reduce computational complexity. Experimental results demonstrate that the proposed method produces enhanced images of comparable or higher quality than those produced using previous state-of-the-art methods.

575 citations

Journal ArticleDOI
TL;DR: A new method for contrast enhancement based on the curvelet transform is presented, which out-performs other enhancement methods on noisy images, but on noiseless or nearNoiseless images curvelet based enhancement is not remarkably better than wave let based enhancement.
Abstract: We present a new method for contrast enhancement based on the curvelet transform. The curvelet transform represents edges better than wavelets, and is therefore well-suited for multiscale edge enhancement. We compare this approach with enhancement based on the wavelet transform, and the multiscale retinex. In a range of examples, we use edge detection and segmentation, among other processing applications, to provide for quantitative comparative evaluation. Our findings are that curvelet based enhancement out-performs other enhancement methods on noisy images, but on noiseless or near noiseless images curvelet based enhancement is not remarkably better than wavelet based enhancement.

516 citations

Network Information
Related Topics (5)
Image processing
229.9K papers, 3.5M citations
86% related
Image segmentation
79.6K papers, 1.8M citations
84% related
Feature (computer vision)
128.2K papers, 1.7M citations
83% related
Feature extraction
111.8K papers, 2.1M citations
82% related
Convolutional neural network
74.7K papers, 2M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202148
202061
201947
201851
201770
201674