scispace - formally typeset

Topic

eDRAM

About: eDRAM is a(n) research topic. Over the lifetime, 416 publication(s) have been published within this topic receiving 7782 citation(s). The topic is also known as: embedded DRAM & embedded dynamic random-access memory.
Papers
More filters

Journal ArticleDOI
18 Jun 2016-
TL;DR: This work explores an in-situ processing approach, where memristor crossbar arrays not only store input weights, but are also used to perform dot-product operations in an analog manner.
Abstract: A number of recent efforts have attempted to design accelerators for popular machine learning algorithms, such as those involving convolutional and deep neural networks (CNNs and DNNs). These algorithms typically involve a large number of multiply-accumulate (dot-product) operations. A recent project, DaDianNao, adopts a near data processing approach, where a specialized neural functional unit performs all the digital arithmetic operations and receives input weights from adjacent eDRAM banks.This work explores an in-situ processing approach, where memristor crossbar arrays not only store input weights, but are also used to perform dot-product operations in an analog manner. While the use of crossbar memory as an analog dot-product engine is well known, no prior work has designed or characterized a full-fledged accelerator based on crossbars. In particular, our work makes the following contributions: (i) We design a pipelined architecture, with some crossbars dedicated for each neural network layer, and eDRAM buffers that aggregate data between pipeline stages. (ii) We define new data encoding techniques that are amenable to analog computations and that can reduce the high overheads of analog-to-digital conversion (ADC). (iii) We define the many supporting digital components required in an analog CNN accelerator and carry out a design space exploration to identify the best balance of memristor storage/compute, ADCs, and eDRAM storage on a chip. On a suite of CNN and DNN workloads, the proposed ISAAC architecture yields improvements of 14.8×, 5.5×, and 7.5× in throughput, energy, and computational density (respectively), relative to the state-of-the-art DaDianNao architecture.

1,030 citations


Proceedings ArticleDOI
Xiaoxia Wu1, Jian Li2, Lixin Zhang2, Evan Speight2  +2 moreInstitutions (2)
20 Jun 2009-
TL;DR: This paper discusses and evaluates two types of hybrid cache architectures: inter cache Level HCA (LHCA), in which the levels in a cache hierarchy can be made of disparate memory technologies; and intra cache level or cache Region based H CA (RHCA), where a single level of cache can be partitioned into multiple regions, each of a different memory technology.
Abstract: Caching techniques have been an efficient mechanism for mitigating the effects of the processor-memory speed gap. Traditional multi-level SRAM-based cache hierarchies, especially in the context of chip multiprocessors (CMPs), present many challenges in area requirements, core-to-cache balance, power consumption, and design complexity. New advancements in technology enable caches to be built from other technologies, such as Embedded DRAM (EDRAM), Magnetic RAM (MRAM), and Phase-change RAM (PRAM), in both 2D chips or 3D stacked chips. Caches fabricated in these technologies offer dramatically different power and performance characteristics when compared with SRAM-based caches, particularly in the areas of access latency, cell density, and overall power consumption. In this paper, we propose to take advantage of the best characteristics that each technology offers, through the use of Hybrid Cache Architecture (HCA) designs. We discuss and evaluate two types of hybrid cache architectures: inter cache Level HCA (LHCA), in which the levels in a cache hierarchy can be made of disparate memory technologies; and intra cache level or cache Region based HCA (RHCA), where a single level of cache can be partitioned into multiple regions, each of a different memory technology. We have studied a number of different HCA architectures and explored the potential of hardware support for intra-cache data movement and power consumption management within HCA caches. Utilizing a full-system simulator that has been validated against real hardware, we demonstrate that an LHCA design can provide a geometric mean 7% IPC improvement over a baseline 3-level SRAM cache design under the same area constraint across a collection of 25 workloads. A more aggressive RHCA-based design provides 12% IPC improvement over the baseline. Finally, a 2-layer 3D cache stack (3DHCA) of high density memory technology within the same chip footprint gives 18% IPC improvement over the baseline. Furthermore, up to 70% reduction in power consumption over a baseline SRAM-only design is achieved.

361 citations


Journal ArticleDOI
01 Mar 2010-IEEE Micro
TL;DR: Power Systems™ continue strong 7th Generation Power chip: Balanced Multi-Core design EDRAM technology SMT4 greater then 4X performance in same power envelope as previous generation.
Abstract: The Power7 is IBM's first eight-core processor, with each core capable of four-way simultaneous-multithreading operation. Its key architectural features include an advanced memory hierarchy with three levels of on-chip cache; embedded-DRAM devices used in the highest level of the cache; and a new memory interface. This balanced multicore design scales from 1 to 32 sockets in commercial and scientific environments.

257 citations


Journal ArticleDOI
Ghavam G. Shahidi1Institutions (1)
TL;DR: The reasons for performance improvement with SOI, and its scalability to the 0.1-µm generation and beyond are described, which is expected to be the technology of choice for system-on-a-chip applications which require high-performance CMOS, low-power, embedded memory, and bipolar devices.
Abstract: Silicon-on-insulator (SOI) CMOS offers a 20–35% performance gain over bulk CMOS. High-performance microprocessors using SOI CMOS have been commercially available since 1998. As the technology moves to the 0.13-µm generation, SOI is being used by more companies, and its application is spreading to lower-end microprocessors and SRAMs. In this paper, after giving a short history of SOI in IBM, we describe the reasons for performance improvement with SOI, and its scalability to the 0.1-µm generation and beyond. Some of the recent applications of SOI in high-end microprocessors and its upcoming uses in low-power, radio-frequency (rf) CMOS, embedded DRAM (EDRAM), and the integration of vertical SiGe bipolar devices on SOI are described. As we move to the 0.1-µm generation and beyond, SOI is expected to be the technology of choice for system-on-a-chip applications which require high-performance CMOS, low-power, embedded memory, and bipolar devices.

238 citations


Proceedings ArticleDOI
19 Jun 2010-
TL;DR: The significant impact of variations on refresh time and cache power consumption for large eDRAM caches is shown and Hi-ECC, a technique that incorporates multi-bit error-correcting codes to significantly reduce refresh rate, is proposed.
Abstract: Technology advancements have enabled the integration of large on-die embedded DRAM (eDRAM) caches. eDRAM is significantly denser than traditional SRAMs, but must be periodically refreshed to retain data. Like SRAM, eDRAM is susceptible to device variations, which play a role in determining refresh time for eDRAM cells. Refresh power potentially represents a large fraction of overall system power, particularly during low-power states when the CPU is idle. Future designs need to reduce cache power without incurring the high cost of flushing cache data when entering low-power states. In this paper, we show the significant impact of variations on refresh time and cache power consumption for large eDRAM caches. We propose Hi-ECC, a technique that incorporates multi-bit error-correcting codes to significantly reduce refresh rate. Multi-bit error-correcting codes usually have a complex decoder design and high storage cost. Hi-ECC avoids the decoder complexity by using strong ECC codes to identify and disable sections of the cache with multi-bit failures, while providing efficient single-bit error correction for the common case. Hi-ECC includes additional optimizations that allow us to amortize the storage cost of the code over large data words, providing the benefit of multi-bit correction at same storage cost as a single-bit error-correcting (SECDED) code (2% overhead). Our proposal achieves a 93% reduction in refresh power vs. a baseline eDRAM cache without error correcting capability, and a 66% reduction in refresh power vs. a system using SECDED codes.

229 citations


Network Information
Related Topics (5)
CMOS

81.3K papers, 1.1M citations

82% related
Integrated circuit

82.7K papers, 1M citations

78% related
Logic gate

35.7K papers, 488.3K citations

78% related
Semiconductor memory

45.4K papers, 663.1K citations

78% related
Threshold voltage

36.5K papers, 485.5K citations

77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202116
202016
201918
201821
201724
201620

Top Attributes

Show by:

Topic's top 5 most impactful authors

Robert Giterman

14 papers, 117 citations

Donald W. Plass

9 papers, 183 citations

John E. Barth

9 papers, 146 citations

Adam Teman

9 papers, 46 citations

Ki-Chul Chun

8 papers, 231 citations