scispace - formally typeset
Search or ask a question
Topic

Effective mass (solid-state physics)

About: Effective mass (solid-state physics) is a research topic. Over the lifetime, 12539 publications have been published within this topic receiving 295485 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Encapsulated 2D InSe expands the family of graphene-like semiconductors and, in terms of quality, is competitive with atomically thin dichalcogenides and black phosphorus.
Abstract: Encapsulated few-layer InSe exhibits a remarkably high electronic quality, which is promising for the development of ultrathin-body high-mobility nanoelectronics. A decade of intense research on two-dimensional (2D) atomic crystals has revealed that their properties can differ greatly from those of the parent compound1,2. These differences are governed by changes in the band structure due to quantum confinement and are most profound if the underlying lattice symmetry changes3,4. Here we report a high-quality 2D electron gas in few-layer InSe encapsulated in hexagonal boron nitride under an inert atmosphere. Carrier mobilities are found to exceed 103 cm2 V−1 s−1 and 104 cm2 V−1 s−1 at room and liquid-helium temperatures, respectively, allowing the observation of the fully developed quantum Hall effect. The conduction electrons occupy a single 2D subband and have a small effective mass. Photoluminescence spectroscopy reveals that the bandgap increases by more than 0.5 eV with decreasing the thickness from bulk to bilayer InSe. The band-edge optical response vanishes in monolayer InSe, which is attributed to the monolayer's mirror-plane symmetry. Encapsulated 2D InSe expands the family of graphene-like semiconductors and, in terms of quality, is competitive with atomically thin dichalcogenides5,6,7 and black phosphorus8,9,10,11.

985 citations

Journal ArticleDOI
TL;DR: In this paper, a variational principle is developed for the lowest energy of a system described by a path integral, which is applied to the problem of the interaction of an electron with a polarizable lattice, as idealized by Frohlich.
Abstract: A variational principle is developed for the lowest energy of a system described by a path integral. It is applied to the problem of the interaction of an electron with a polarizable lattice, as idealized by Frohlich. The motion of the electron, after the phonons of the lattice field are eliminated, is described as a path integral. The variational method applied to this gives an energy for all values of the coupling constant. It is at least as accurate as previously known results. The effective mass of the electron is also calculated, but the accuracy here is difficult to judge.

939 citations

Journal ArticleDOI
W. F. Brinkman1, T. M. Rice1
TL;DR: In this article, it was shown that the approximate variational calculation of Gutzwiller predicts a metal-insulator transition as the intra-atomic Coulomb interaction is increased for the case of one electron per atom.
Abstract: It is shown that the approximate variational calculation of Gutzwiller predicts a metal-insulator transition as the intra-atomic Coulomb interaction is increased for the case of one electron per atom. The susceptibility and effective mass are calculated in the metallic phase and are found to be enhanced by a common factor which diverges at the critical value of the interaction.

863 citations

Journal ArticleDOI
TL;DR: In this article, the electronic properties of few-layer phosphorene focusing on layer-dependent behavior of band gap, work function band alignment and carrier effective mass were analyzed and shown to have a robust direct band gap character and its band gap decreases with the number of layers following a power law.
Abstract: Using first-principles calculations, we study the electronic properties of few-layer phosphorene focusing on layer-dependent behavior of band gap, work function band alignment and carrier effective mass. It is found that few-layer phosphorene shows a robust direct band gap character and its band gap decreases with the number of layers following a power law. The work function decreases rapidly from monolayer (5.16 eV) to trilayer (4.56 eV) and then slowly upon further increasing the layer number. Compared to monolayer phosphorene, there is a drastic decrease of hole effective mass along the ridge (zigzag) direction for bilayer phosphorene, indicating a strong interlayer coupling and screening effect. Our study suggests that 1). Few-layer phosphorene with a layer-dependent band gap and a robust direct band gap character is promising for efficient solar energy harvest. 2). Few-layer phosphorene outperforms monolayer counterpart in terms of a lighter carrier effective mass, a higher carrier density and a weaker scattering due to enhanced screening. 3). The layer-dependent band edges and work functions of few-layer phosphorene allow for modification of Schottky barrier with enhanced carrier injection efficiency. It is expected that few-layer phosphorene will present abundant opportunities for a plethora of new electronic applications.

746 citations

Book
06 May 1980
TL;DR: In this paper, the Boltzmann Transport Equation is used to calculate the collision probability of the Sphalerite and the Chalcopyrite structures, and the Brillouin Zone is used for the Wurtzite structure.
Abstract: 1. Introduction.- 1.1 Historical Note.- 1.2 Applications.- 1.3 Transport Coefficients of Interest.- 1.4 Scope of the Book.- 2. Crystal Structure.- 2.1 Zinc-Blende Structure.- 2.2 Wurtzite Structure.- 2.3 Rock-Salt Structure.- 2.4 Chalcopyrite Structure.- 3. Energy Band Structure.- 3.1 Electron Wave Vector and Brillouin Zone.- 3.2 Brillouin Zone for the Sphalerite and Rock-Salt Crystal Structure.- 3.3 Brillouin Zone for the Wurtzite Structure.- 3.4 Brillouin Zone for the Chalcopyrite Structure.- 3.5 E-k Diagrams.- 3.5.1 Energy Bands for the Sphalerite Structure.- 3.5.2 Energy Bands for the Wurtzite Structure.- 3.5.3 Energy Bands for the Rock-Salt Structure.- 3.5.4 Band Structure of Mixed Compounds.- 3.6 Conclusion.- 4. Theory of Efiergy Band Structure.- 4.1 Models of Band Structure.- 4.2 Free-Electron Approximation Model.- 4.3 Tight-Binding Approximation Model.- 4.4 Energy Bands in Semiconductor Super!attices.- 4.5 The k-p Perturbation Method for Derivating E-k Relation.- 4.5.1 Single-Band Perturbation Theory.- 4.5.2 Two-Band Approximation.- 4.5.3 Effect of Spin-Orbit Interaction.- 4.5.4 Nonparabolic Relation for Extrema at Points Other than the r Point.- 4.6 External Effects on Energy Bands.- 4.6.1 Effects of Doping.- 4.6.2 Effects of Large Magnetic Fields.- 5. Electron Statistics.- 5.1 Fermi Energy for Parabolic Bands.- 5.2 Fermi Energy for Nonparabolic Bands.- 5.3 Fermi Energy in the Presence of a Quantising Magnetic Field.- 5.3.1 Density of States.- 5.3.2 Fermi Level.- 5.4 Fermi Energy and Impurity Density.- 5.4.1 General Considerations.- 5.4.2 General Formula.- 5.4.3 Discussion of Parabolic Band.- 5.4.4 Effect of Magnetic Field.- 5.5 Conclusions.- 6. Scattering Theory.- 6.1 Collision Processes.- 6.2 Transition Probability.- 6.3 Matrix Elements.- 6.4 Free-Carrier Screening.- 6.5 Overlap Integrals.- 6.6 Scattering Probability S(k).- 6.6.1 S(k) for Ionised Impurity Scattering.- 6.6.2 S(k) for Piezoelectric Scattering.- 6.6.3 S(k) for Deformation-Potential Acoustic Phonon Scattering.- 6.6.4 S(k) for Polar Optic Phonon Scattering.- 6.6.5 S(k) for Intervalley and Nonpolar Optic Phonon Scattering.- 6.7 Scattering Probabilities for Anisotropic Bands.- 6.7.1 Herring-Vogt Transformation.- 6.7.2 Scattering Integrals.- 6.8 S(k) for Neutral Impurity, Alloy, and Crystal-Defect Scattering.- 6.8.1 Neutral-Impurity Scattering.- 6.8.2 Alloy Scattering.- 6.8.3 Defect Scattering.- 6.9 Conclusions.- 7. The Boltzmann Transport Equation and Its Solution.- 7.1 The Liouville Equation and the Boltzmann Equation.- 7.2 The Boltzmann Transport Equation.- 7.3 The Collision Integral.- 7.4 Linearised Boltzmann Equation.- 7.5 Simplified Form of the Collision Terms.- 7.5.1 Collision Terms for Elastic Scattering.- 7.5.2 Collision Terms for Inelastic Scattering.- 7.6 Solution of the Boltzmann Equation.- 7.6.1 Relaxation-Time Approximation.- 7.6.2 Variational Method.- 7.6.3 Matrix Method.- 7.6.4 Iteration Method.- 7.6.5 Monte Carlo Method.- 7.7 Method of Solution for Anisotropic Coupling Constants and Anisotropic Electron Effective Mass.- 7.7.1 Solution for Elastic Collisions.- 7.7.2 Solution for Randomising Collisions.- 7.7.3 Solution for Nonrandomising Inelastic Collisions.- 7.8 Conclusions.- 8. Low-Field DC Transport Coefficients.- 8.1 Evaluation of Drift Mobility.- 8.1.1 Formulae for Relaxation-Time Approximation.- 8.1.2 Evaluation by the Variational Method.- 8.1.3 Evaluation by Matrix and Iteration Methods.- 8.1.4 Evaluation by the Monte Carlo Method.- 8.2 Drift Mobility for Anisotropic Bands.- 8.2.1 Ellipsoidal Band.- 8.2.2 Warped Band.- 8.3 Galvanomagnetic Transport Coefficients.- 8.3:1 Formulae for Hall Coefficient, Hall Mobility, and Magnetoresistance.- 8.3.2 Reduced Boltzmann Equation for the Galvanomagnetic Coefficients.- 8.3.3 Solution Using the Relaxation-Time Approximation Method.- 8.3.4 A Simple Formula for the Low-Field Hall Mobility.- 8.3.5 Numerical Methods for the Galvanomagnetic Coefficients for Arbitrary Magnetic Fields.- 8.3.6 Evaluation of the Galvanomagnetic Transport Coefficients for Anisotropic Effective Mass.- 8.4 Transport Coefficients for Nonuniform conditions.- 8.4.1 Diffusion.- 8.4.2 Thermal Transport Coefficients.- 8.4.3 Formula for Thermoelectric Power.- 8.4.4 Electronic Thermal Conductivity.- 8.5 Conclusions.- 9. Low-Field AC Transport Coefficients.- 9.1 Classical Theory of AC Transport Coefficients.- 9.1.1 Solution for the Relaxation-Time Approximation.- 9.1.2 Solution for Polar Optic Phonon and Mixed Scattering.- 9.1.3 Solution for Nonparabolic and Anisotropic Bands.- 9.2 AC Galvanomagnetic Coefficients.- 9.3 Cyclotron Resonance and Faraday Rotation.- 9.3.1 Propagation of Electromagnetic Waves in a Semiconductor in the Presence of a Magnetic Field.- 9.3.2 Cyclotron Resonance Effect.- 9.3.3 Faraday Rotation.- 9.4 Free-Carrier Absorption (FCA).- 9.4.1 Classical Theory of FCA.- 9.4.2 Quantum-Mechanical Theory of FCA.- 9.5 Concluding Remarks.- 10. Electron Transport in a Strong Magnetic Field.- 10.1 Scattering Probabilities.- 10.2 Mobility in Strong Magnetic Fields.- 10.3 Electron Mobility in the Extreme Quantum Limit (EQL).- 10.3.1 Electron Mobility for Polar Optic Phonon Scattering in the EQL.- 10.4 Oscillatory Effects in the Magnetoresistance.- 10.4.1 Shubnikov-de Haas Effect.- 10.4.2 Magnetophonon Oscillations.- 10.5 Experimental Results on Magnetophonon Resonance.- 10.6 Conclusions.- 11. Hot-Electron Transport.- 11.1 Phenomenon of Hot Electrons.- 11.2 Experimental Characteristics.- 11.3 Negative Differential Mobility and Electron Transfer Effect.- 11.4 Analytic Theories.- 11.4.1 Differential Equation Method.- 11.4.2 Maxwellian Distribution Function Method.- 11.4.3 Displaced Maxwellian Distribution Function Method.- 11.5 Numerical Methods.- 11.5.1 Iteration Method.- 11.5.2 Monte Carlo Method.- 11.6 Hot-Electron AC Conductivity.- 11.6.1 Phenomenological Theory for Single-Valley Materials.- 11.6.2 Phenomenological Theory for Two-Valley Materials.- 11.6.3 Large-Signal AC Conductivity.- 11.7 Hot-Electron Diffusion.- 11.7.1 Einstein Relation for Hot-Electron Diffusivity.- 11.7.2 Electron Diffusivity in Gallium Arsenide.- 11.7.3 Monte Carlo Calculation of the Diffusion Constant.- 11.8 Conclusion.- 12. Review of Experimental Results.- 12.1 Transport Coefficients of III-V Compounds.- 12.1.1 Indium Antimonide.- 12.1.2 Gallium Arsenide.- 12.1.3 Indium Phosphide.- 12.1.4 Indium Arsenide.- 12.1.5 Indirect-Band-Gap III-V Compounds.- 12.2 II-VI Compounds.- 12.2.1 Cubic Compounds of Zinc and Cadmium.- 12.2.2 Wurtzite Compounds of Zinc and Cadmium.- 12.2.3 Mercury Compounds.- 12.3 IV-VI Compounds.- 12.4 Mixed Compounds.- 12.5 Chalcopyrites.- 12.6 Conclusion.- 13. Conclusions.- 13.1 Problems of Current Interest.- 13.1.1 Heavily Doped Materials.- 13.1.2 Alloy Semiconductors.- 13.1.3 Transport Under Magnetically Quantised Conditions.- 13.1.4 Inversion Layers.- 13.1.5 Superlattices and Heterostructures.- 13.2 Scope of Further Studies.- Appendix A: Table of Fermi Integrals.- Appendix B: Computer Program for the Evaluation of Transport Coefficients by the Iteration Method.- Appendix C: Values of a. and b. for Gaussian Quadrature Integration. 417 Appendix D: Computer Program for the Monte Carlo Calculation of Hot-Electron Conductivity and Diffusivity.- List of Symbols.- References.

716 citations


Network Information
Related Topics (5)
Band gap
86.8K papers, 2.2M citations
91% related
Magnetization
107.8K papers, 1.9M citations
91% related
Electron
111.1K papers, 2.1M citations
90% related
Quantum dot
76.7K papers, 1.9M citations
89% related
Scattering
152.3K papers, 3M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202215
2021410
2020421
2019395
2018362
2017412