scispace - formally typeset
Search or ask a question
Topic

Effective number of bits

About: Effective number of bits is a research topic. Over the lifetime, 3776 publications have been published within this topic receiving 46130 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this ADC, high-speed open-loop dynamic amplifiers with a common-mode detection technique are used as residue amplifiers to increase the ADC's speed, to enhance the robustness against supply voltage scaling, and to realize clock-scalable power consumption.
Abstract: This paper presents a 0.55 V, 7 bit, 160 MS/s pipeline ADC using dynamic amplifiers. In this ADC, high-speed open-loop dynamic amplifiers with a common-mode detection technique are used as residue amplifiers to increase the ADC's speed, to enhance the robustness against supply voltage scaling, and to realize clock-scalable power consumption. To mitigate the absolute gain constraint of the residue amplifiers in a pipeline ADC, the interpolated pipeline architecture is employed to shift the gain requirement from absolute to relative accuracy. To show the new requirements of the residue amplifiers, the effects of gain mismatch and nonlinearity of the dynamic amplifiers are analyzed. The 7 bit prototype ADC fabricated in 90 nm CMOS demonstrates an ENOB of 6.0 bits at a conversion rate of 160 MS/s with an input close to the Nyquist frequency. At this conversion rate, it consumes 2.43 mW from a 0.55 V supply. The resulting FoM of the ADC is 240 fJ/conversion-step.

38 citations

Patent
12 Feb 2008
TL;DR: In this paper, the sigma bits are used to correctly identify which cells were programmed at which program level, despite threshold voltage drift and/or overlap, and the bits can be sorted out.
Abstract: During programming of memory cells, calculating sigma bits for cells programmed at each program level based on attributes of the cells, such an index representing a cell's bit location in the memory array. For example, summing the indexes with an increasing weight factor, such as factor-of-2. During read, new sigma bits are calculated and compared with the stored sigma bits. A difference between the new sigma bits and the stored sigma bits may define a unique combination of indexes, enabling searching for, finding and correcting the read errors. The sigma bits may be used to correctly identify which cells were programmed at which program level, despite threshold voltage drift and/or overlap. Programming may be performed with advertent overlapping distributions, and the bits can be sorted out.

38 citations

Journal ArticleDOI
TL;DR: A new power reduction technique which masks the unused blocks in a semi-pipeline chain of latches and encoders is introduced which reduces the power consumption by 20 percent compared to the conventional structure when a Nyquist rate OFDM signal is applied.
Abstract: A low power 4-bit, 1.6 GS/s flash ADC is presented. A new power reduction technique which masks the unused blocks in a semi-pipeline chain of latches and encoders is introduced. The proposed circuit determines the unused blocks based on a pre-sensing of the signal. Moreover, a reference voltage generator with very low static power dissipation is used. Novel techniques to reduce the sensitivity to dynamic noise are proposed to suppress the noise effects on the reference generator. The proposed circuit reduces the power consumption by 20 percent compared to the conventional structure when a Nyquist rate OFDM signal is applied. The INL and DNL of the converter are smaller than 0.3 LSB after calibration. The converter offers 3.8 effective number of bits (ENOB) at 1.6 GS/s sampling rate with a low frequency input signal and more than 1.8 GHz effective resolution bandwidth (ERBW) at this sampling rate. The converter consumes mere 15.5 mW from a 1.8 V supply, yielding an FoM of 695 fJ/conversion.step and occupies 0.3 mm2 in a 0.18 μm standard CMOS process.

37 citations

Patent
John L. Melanson1
26 Feb 2008
TL;DR: A transformer-isolated analog-to-digital converter (ADC) feedback apparatus and method provides reduction of circuit complexity in high power/high voltage systems having a transformer isolated sensing circuit.
Abstract: A transformer-isolated analog-to-digital converter (ADC) feedback apparatus and method provides reduction of circuit complexity in high power/high voltage systems having a transformer-isolated sensing circuit. The feedback apparatus is a circuit including an ADC for receiving an analog input signal and a transformer having a first winding that receives a modulated output of the analog-to-digital converter. A second winding of the transformer provides an isolated data output of the ADC. A demodulator is coupled to the second winding of the transformer and demodulates the isolated output to generate a digital representation of the analog input signal. The ADC may be a delta-sigma converter and the demodulator may be the corresponding decimation filter. The circuit further includes an isolation circuit for introducing a clock signal and/or power supply waveform at the second winding of the transformer, so that the ADC circuit is supplied with an isolated clock and/or an isolated power supply.

37 citations

Journal ArticleDOI
TL;DR: A 7-bit, 2.2-GS/s time-interleaved subranging CMOS analog-to-digital converter for low-power gigabit wireless communication system-on-a-chip (SoC) is presented and a time-splitting subranging architecture is invented to significantly boost the speed of individual ADC channels.
Abstract: A 7-bit, 2.2-GS/s time-interleaved subranging CMOS analog-to-digital converter (ADC) for low-power gigabit wireless communication system-on-a-chip (SoC) is presented. A time-splitting subranging architecture is invented to significantly boost the speed of individual ADC channels. In addition, a low-power and fast-settling distributed resistor array for reference voltages is proposed to mitigate gain mismatches within channels. Moreover, the channel offset mismatches are calibrated through the digital- controlled corrective current sources embedded in the track-and-hold amplifiers of each sub-ADC. The prototype is implemented in 65 nm CMOS, occupying only 0.3 mm2 chip area and consuming 40 mW at 2.2 GS/s from a 1 V supply. Measured signal-to-noise and distortion ratio (SNDR) and spurious-free dynamic range (SFDR) are 38 dB and 46 dB, respectively, with a 1.08 GHz input at 2.2 GS/s sampling rate. The effective number of bits (ENOB) is 6.0 bits at Nyquist rate, and the figure-of-merit (F.O.M.) is 0.28 pJ/conv.-step. This prototype has also been integrated into a gigabit self-healing wireless transceiver SoC.

37 citations


Network Information
Related Topics (5)
CMOS
81.3K papers, 1.1M citations
94% related
Integrated circuit
82.7K papers, 1M citations
88% related
Amplifier
163.9K papers, 1.3M citations
88% related
Electronic circuit
114.2K papers, 971.5K citations
87% related
Transistor
138K papers, 1.4M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202361
2022143
202196
2020147
2019149
2018147