scispace - formally typeset

Effective porosity

About: Effective porosity is a(n) research topic. Over the lifetime, 1199 publication(s) have been published within this topic receiving 26511 citation(s).

More filters
Journal ArticleDOI
TL;DR: Enginsera et al. as discussed by the authors proposed an idealized model for the purpose of studying the characteristic behavior of a permeable medium which contains regions which contribute significantly to the pore volume of the system but contribute negligibly to the flow capacity.
Abstract: An idealized model has been developed for the purpose of studying the characteristic behavioroja permeable medium which contains regions which contribute sigizificantly to tbe pore volume O! the system but contribute negligibly to the flow capacity; e.g., a naturally fractured or vugular reservoir, Vnsteady-state flow in this model reservoir has been investigated analytically. The pressure buiid-up performance has been examined insomedetait; and, a technique foranalyzing tbebuild.up data to evaluate the desired parameters has been suggested. The use of this ap$roacb in the interpretation of field data has been discussed. As a result of this study, the following general conclusions can be drawn: 1. Two parameters are sufficient to characterize the deviation of the behavior of a medium with “double porosity ”from that of a homogeneously porous medium. 2. These Parameters can be evaluated by the proper analy~is of pressure buildup data ob~ained from adequately designed tests. 3. Since the build-up curve associated with this type of porous system is similar to that obtained from a stratified reservoir, an unambiguous interpretation is not possible without additional information. 4, Dif@rencing methods which utilize pressure data from the /inal stages of a buik-kp test should be used with extreme caution. INTRODUCTION In order to plan a sound exploitation program or a successful secondary-recovery pro ject, sufficient reliable information concerning the nature of the reservoir-fluid system must be available. Sincef it is evident chat an adequate description of the reservoir rock is necessary if this condition is to be fulfilled, the present investigation was undertaken for the purpose of improving the fluid-flow characterization, based on normally available data, ofs particular porous medium. DISCUSSION OF THE PROBLEM For many years it was widely assumed that, for the purpose of making engineering studies, two psram. . -. . Origlml manuscriptreceived fn eociaty of Petroleum Ertatneere offiae AUS. 17, 1962.Revieed manuscriptreceived.March21, 1963. P eper pr+$eented at the Fetl Meeting of the %ciot Y of. Petreleum Enginsera In Lo= Ar@Ies on Oct. 7-10, 1962. ‘ . GULF RESEARCH d DEVELOPMENT CO. PITTSBURGH, PA, eters were sufficient to desckibe the single-phase flow properties of a prodttcing formation, i.e., the absolute permeability and the effective porosity. It : later became evident that the concept of directional permeability was of more thin academic interest; consequently, the de$ee of permeability anisotropy and the orientation of the principal axes of permeability were accepted as basic parameters governing reservoir performance. 1,2 More recently, 3“6 it was recognized that at least one additional parameter was required to depict the behavior of a porous system containing region,s which contributed significantly to the pore volume but contributed negligibly to the flow capacity. Microscopically, these regions could be “dead-end” or “storage” pores or, microscopically, they could be discrete volumes of lowpermeability inatrix rock combined with natural fissures in a reservoir. It is obvious thst some provision for the ;.ncIusion of all the indicated parameters, as weIl as their spatial vstiations$ must be made if a truly useful, conceptual model of a reaetvoir is to be developed. A dichotomy Qf the internaI voids of reservoir rocks has been suggested, r~s These two classes of porosity can be described as follows: a. Primary porosity is intergranular and controlled by deposition and Iithification. It ie highly intercoririected arid “usually can be correlated with permeability since it is largely dependent on the geometry, size distribution and spatial distribution of the grains. The void systems of sands, sandstones and oolitic limestones are typical of this type. b. Secondary porosity is foramenular and is controlled by fracturing, jointing and/or solution in circulating water although it may be modified by infilling as a result of precipitation. It is not highly interconnected and usually cannot be correlated with permeability. Solution channels or vugular voids developed during weathering or buriaI in sedimentary basins are indigenous to carbonate rocks such as limestones or dolomites. Joints or fissures which occur in massive, extensive formations composed of shale, siltstone, schist, limestone or dolomite are generally vertical, and they are ascribed to tensional failure, during mechanical deformation (the permeability associated with this type of void system is often anisotropic). Shrinkage cracks are the result 1 ~ef&ence. aiven atendof p@er. ‘-

3,065 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a taxonomic classification of porosity in sedimentary carbonates, based on the time and place in which porosity is created or modified, which is important elements of a genetically oriented classification.
Abstract: Pore systems in sedimentary carbonates are generally complex in their geometry and genesis, and commonly differ markedly from those of sandstones. Current nomenclature and classifications appear inadequate for concise description or for interpretation of porosity in sedimentary carbonates. In this article we review current nomenclature, propose several new terms, and present a classification of porosity which stresses interrelations between porosity and other geologic features. The time and place in which porosity is created or modified are important elements of a genetically oriented classification. Three major geologic events in the history of a sedimentary carbonate form a practical basis for dating origin and modification of porosity, independent of the stage of lithification. These events are (1) creation of the sedimentary framework by clastic accumulation or accretionary precipitation (final deposition), (2) passage of a deposit below the zone of major influence by processes related to and operating from the deposition surface, and (3) passage of the sedimentary rock into the zone of influence by processes operating from an erosion surface (unconformity). The first event, final deposition, permits recognition of predepositional, depositional, and post epositional stages of porosity evolution. Cessation of final deposition is the most practical basis for distinguishing primary and secondary (postdepositional) porosity. Many of the key postdepositional changes in sedimentary carbonates and their pore systems occur near the surface, either very early in burial history or at a penultimate stage associated with uplift and erosion. Porosity created or modified at these times commonly can be differentiated. On the basis of the three major events heretofore distinguished, we propose to term the early burial stage "eogenetic," the late stage "telogenetic," and the normally very long intermediate stage "mesogenetic." These new terms are also applicable to process, zones of burial, or porosity formed in these times or zones (e.g., eogenetic ceme tation, mesogenetic zone, telogenetic porosity). The proposed classification is designed to aid in geologic description and interpretation of pore systems End_Page 207------------------------------ and their carbonate host rocks. It is a descriptive and genetic system in which 15 basic porosity types are recognized: seven abundant types (interparticle, intraparticle, intercrystal, moldic, fenestral, fracture, and vug), and eight more specialized types. Modifying terms are used to characterize genesis, size and shape, and abundance of porosity. The genetic modifiers involve (1) process of modification (solution, cementation, and internal sedimentation), (2) direction or stage of modification (enlarged, reduced, or filled), and (3) time of porosity formation (primary, secondary, predepositional, depositional, eogenetic, mesogenetic, and telogenetic). Used with the basic porosity type, these genetic modifiers permit explicit designation of porosity origin and evolution. Pore shapes are classed as irregular or regular, and the latter are subdivided into equant, tubular, and platy shapes. A grade scale for size of regular-shaped pores, utilizing the average diameter of equant or tubular pores and the width of platy pores, has three main classes: micropores (< 1/16 mm), mesopores (1/16-4 mm), and megapores (4-256 mm). Megapores and mesopores are divided further into small and large subclasses. Abundance is noted by percent volume and/or by ratios of porosity types. Most porosity in sedimentary carbonates can be related specifically to sedimentary or diagenetic components that constitute the texture or fabric (fabric-selective porosity). Some porosity cannot be related to these features. Fabric selectivity commonly distinguishes pore systems of primary and early postdepositional (eogenetic) origin from those of later (telogenetic) origin that normally form after extensive diagenesis has transformed the very porous assemblage of stable and unstable carbonate minerals into a much less porous aggregate of ordered dolomite and/or calcite. Porosity in most carbonate facies, including most carbonate petroleum reservoir rocks, is largely fabric selective.

1,328 citations

Journal ArticleDOI
TL;DR: There are a large number of methods for quantifying porosity, and an increasingly complex idea of what it means to do so as discussed by the authors, which is why it is important to quantify the relationships between porosity and storage, transport and rock properties, however, the pore structure must be measured and quantitatively described.
Abstract: Porosity plays a clearly important role in geology. It controls fluid storage in aquifers, oil and gas fields and geothermal systems, and the extent and connectivity of the pore structure control fluid flow and transport through geological formations, as well as the relationship between the properties of individual minerals and the bulk properties of the rock. In order to quantify the relationships between porosity, storage, transport and rock properties, however, the pore structure must be measured and quantitatively described. The overall importance of porosity, at least with respect to the use of rocks as building stone was recognized by TS Hunt in his “Chemical and Geological Essays” (1875, reviewed by JD Dana 1875) who noted: > “Other things being equal, it may properly be said that the value of a stone for building purposes is inversely as its porosity or absorbing power.” In a Geological Survey report prepared for the U.S. Atomic Energy Commission, Manger (1963) summarized porosity and bulk density measurements for sedimentary rocks. He tabulated more than 900 items of porosity and bulk density data for sedimentary rocks with up to 2,109 porosity determinations per item. Amongst these he summarized several early studies, including those of Schwarz (1870–1871), Cook (1878), Wheeler (1896), Buckley (1898), Gary (1898), Moore (1904), Fuller (1906), Sorby (1908), Hirschwald (1912), Grubenmann et al. (1915), and Kessler (1919), many of which were concerned with rocks and clays of commercial utility. There have, of course, been many more such determinations since that time. There are a large number of methods for quantifying porosity, and an increasingly complex idea of what it means to do so. Manger (1963) listed the techniques by which the porosity determinations he summarized were made. He separated these into seven methods for …

602 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on quantification and predictability of three major causes of anomalous high porosity: (1) grain coats and grain rims, (2) early emplacement of hydrocarbons, and (3) shallow development of fluid overpressure.
Abstract: Porosity and permeability generally decrease with increasing depth (thermal exposure and effective pressure); however, a significant number of deep (>4 km [approximately 13,000 ft]) sandstone reservoirs worldwide are characterized by anomalously high porosity and permeability. Anomalous porosity and permeability can be defined as being statistically higher than the porosity and permeability values occurring in typical sandstone reservoirs of a given lithology (composition and texture), age, and burial/temperature history. In sandstones containing anomalously high porosities, such porosities exceed the maximum porosity of the typical sandstone subpopulation. Major causes of anomalous porosity and permeability were identified decades ago; however, quantification of the effect of processes responsible for anomalous porosity and permeability and the assessment of the predictability of anomalous porosity and permeability occurrence in subsurface sandstones have rarely been addressed in published literature. The focus of this article is on quantification and predictability of three major causes of anomalously high porosity: (1) grain coats and grain rims, (2) early emplacement of hydrocarbons, and (3) shallow development of fluid overpressure. Grain coats and grain rims retard quartz cementation and concomitant porosity and permeability reduction by inhibiting precipitation of quartz overgrowths on detrital-quartz grains. Currently, prediction of anomalous porosity associated with grain coats and grain rims is dependent on the availability of empirical data sets. In the absence of adequate empirical data, sedimentologic and diagenetic models can be helpful in assessing risk due to reservoir quality. Such models provide a means to evaluate the effect of geologic constraints on coating occurrence and coating completeness required to preserve economically viable porosity and permeability (Begin page 302) in a given play or prospect. These constraints include thermal history and sandstone grain size and composition. The overall effect of hydrocarbon emplacement on reservoir quality is controversial. It appears that at least some cements (quartz and illite) may continue to precipitate following emplacement of hydrocarbons into the reservoir. Our work indicates that integration of basin modeling with reservoir quality modeling can be used to quantify, prior to drilling, the potential impact of hydrocarbon emplacement on porosity and permeability. The best-case scenario for significant reservoir quality preservation due to fluid overpressure development is in rapidly deposited Tertiary or Quaternary sandstones. Our models suggest that significant porosity can be preserved in sandstones that have experienced continuous high fluid overpressures from shallow burial depths. The models also indicate that the potential for porosity preservation is greatest in ductile-grain-rich sandstones because compaction tends to be the dominant control on reservoir quality in such rocks. The case for significant porosity preservation associated with fluid overpressures in pre-Tertiary basins, however, is more problematic because of the complexities in the history of fluid overpressure and the greater significance of quartz cementation as a potential mechanism of porosity loss.

411 citations

Journal ArticleDOI
TL;DR: In this article, a lattice-gas cellular automaton method is used to simulate the dependence on porosity of a flow of Newtonian uncompressible fluid in this two-dimensional porous substance.
Abstract: The concept of permeability of porous media is discussed, and a modification of Kozeny's permeability equation to include the effect of effective porosity is introduced. An analytical expression for the specific surface area of a system constructed of randomly placed identical obstacles with unrestricted overlap is derived, and a lattice-gas cellular automaton method is then used to simulate the dependence on porosity of permeability, tortuosity, and effective porosity for a flow of Newtonian uncompressible fluid in this two-dimensional porous substance. The simulated permeabilities can well be explained by the concept of effective porosity, and the exact form of the specific surface area. The critical exponent of the permeability near the percolation threshold is also determined from the simulations.

350 citations

Network Information
Related Topics (5)
41.4K papers, 778.5K citations
82% related
59.3K papers, 1M citations
79% related
Sedimentary rock
30.3K papers, 746.5K citations
78% related
Porous medium
40.5K papers, 958.9K citations
75% related
48.7K papers, 1.2M citations
75% related
No. of papers in the topic in previous years