scispace - formally typeset
Search or ask a question
Topic

Effective porosity

About: Effective porosity is a research topic. Over the lifetime, 1199 publications have been published within this topic receiving 26511 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a self-designed particle transfer permeability testing system was used to test the crushed mudstones' flow properties, which included fine filling particle transfer rate, porosity increase rate and permeability under the conditions of varying pore pressure, particle size mixture and compaction level (initial porosity).
Abstract: Karst collapse pillar (KCP) is widespread in North China coalfields, where coal extraction above the Ordovician limestone aquifer is threatened by the abundant supply of water and a very high hydraulic pressure. KCP is composed of rock skeleton and fine fillings, which can be transferred under the effect of water flow, thus KCP usually functions as a channel for groundwater inrush. In order to investigate the mechanism of mining-induced groundwater inrush of KCP which was caused by fine fillings transfer, a self-designed particle transfer permeability testing system was used to test the crushed mudstones’ flow properties, which included fine filling particle transfer rate, porosity increase rate and permeability under the conditions of varying pore pressure, particle size mixture and compaction level (initial porosity). The tests indicate fine fillings transfer is the essential reason for mining-induced groundwater inrush (flow instability) of KCP. The flow properties changeability during fine particle transfer could be divided into four stages, i.e., initial flow stage, flow inrush stage, continued particle flow stage and stable flow stage, and flow inrush stage which is the key point to cause water inrush. Due to the crushing of edges and corners and the adjustment of the structure, the fluctuation of permeability–time relationship mainly distributed in the first two stages, which make a change to flow channel. Moreover, with the increasing of pore pressure, particle size mixture and initial porosity, the water inrush time and stable seepage time decreased more rapidly; the fine fillings, porosity and permeability increased gradually. The efficiency criteria analysis between measurement and calculation permeability shows an empirical equation can fit the relationship between porosity and permeability well, and not all of the pore structures were in flow; this means there was a part of pores that were invalid, but the effective porosity in flow can be treated as calculation value approximately.

58 citations

Book ChapterDOI
01 Jan 2016
TL;DR: In this paper, a scanning electron microscope study on ion-milled drill-core samples from southern Texas was conducted to understand the development of petrographic features and porosity and place them in stratigraphic context.
Abstract: Although typically considered with a focus on high-resolution petrography, shale porosity should not be thought of as a stand-alone petrographic feature. Shale and mudstone porosity is the outcome of a long succession of processes and events that span the continuum from deposition through burial, compaction, and late diagenesis. For the Eagle Ford Shale this journey began with accumulation in intra-shelf basins at relatively low latitudes on a southeast-facing margin during early parts of the late Cretaceous. To understand the factors that generated and preserved porosity in this economically important interval, a scanning electron microscope study on ion-milled drill-core samples from southern Texas was conducted to understand the development of petrographic features and porosity and place them in stratigraphic context. The studied samples show multiple pore types, including pores defined by mineral frameworks (clay and calcite), shelter pores in foraminifer tests and other hollow fossil debris, and pores in organic material (OM). In many instances, framework and shelter pores are filled with OM that has developed pores due to maturation. Large bubble pores in OM suggest that hydrocarbon liquids were left behind in or migrated into these rocks following petroleum generation and that the bubbles developed as these rocks experienced additional thermal stress. These larger OM pores indicate deeper seated interconnection on ion-milled surfaces and in three-dimensional image stacks. The largest pores occur in the infills of foraminifer tests. The framework of crushed carbonate debris in planktonic fecal pellets shows intermediate levels of porosity, and the silicate-rich matrix that encloses framework components has the smallest average porosity. The distribution of pore types is not uniform. Our hypothesis is that facies association is an important factor that determines bulk porosity and influences reservoir performance. The observed variability in the attributes of the described distal, medial, and proximal facies associations is thought to translate into significant variability of rock properties such as total organic carbon and porosity. In turn, this variability should control the quality and distribution of the intervals that are optimum sources and reservoirs of hydrocarbons in the Eagle Ford Shale. The medial facies association most likely has the best porosity development when a favorable combination of more commonly abundant calcareous fecal pellets and organic material versus clay content is present. The systematic arrangement of facies associations into parasequences provides the basis for testing and predicting the best development of optimal reservoir facies within a sequence-stratigraphic framework in the Eagle Ford Shale.

57 citations

Journal ArticleDOI
TL;DR: High resolution preferential water-saturated flow and bromide transport data were used to evaluate the suitability of equivalent porous medium (EPM), dual porosity (DP) and discrete fracture/matrix diffusion (DFMD) numerical modeling approaches for assessment of flow and non-reactive solute transport in clayey till.

56 citations

Journal ArticleDOI
TL;DR: In this article, the changes in engineering properties due to weathering were evaluated and the most suitable parameters for characterizing the degree of weathering of the studied dunites are loss-on-ignition values, specific gravity, unit weights, water absorption, effective porosity, uniaxial compressive strength, P-wave velocity, and slake-durability index.
Abstract: Weathering processes cause important changes in the engineering properties of rocks. In this study, dunites in the Bursa region in western Turkey were investigated and the changes in engineering properties due to weathering were evaluated. The studies were initiated with field observations including measurement of the characteristics of discontinuities such as spacing, aperture, fill material, roughness, and Schmidt hammer rebound value. Subsequently, laboratory studies were conducted in two stages. The first stage comprised mineralogical, petrographic, and chemical analyses. The second stage included physicomechanical tests to determine specific gravity, unit weights, water absorption, effective porosity, uniaxial compressive strength, P-wave velocity, and slake-durability index. According to these evaluations, the changes in engineering properties were determined to be mostly related to serpentinization at every stage of weathering. The most suitable parameters for characterizing the degree of weathering of the studied dunites are loss-on-ignition values, specific gravity, unit weight, water absorption, and effective porosity.

56 citations

Proceedings ArticleDOI
11 Jun 2001
TL;DR: In this paper, a methodology has been developed which can work well in low temperature and can be used for low temperature measurement of porosity in low-volatile sediment in a low temperature environment.
Abstract: O-25 CHALLENGES OF POROSITY BASED PORE PRESSURE PREDICTION DR R E SWARBRICK 1 GeoPOP University of Durham Department of Geological Sciences South Road Durham DH1 3LE UK Abstract Porosity is used as a rock property implicitly reflecting the degree of compaction of sediment The porosity values may be derived from wireline response or a porosity attribute may be used directly for example velocity data derived from seismic Where undercompaction occurs due to fluid retention and overpressure porosity is retained above the level referred to as “normal compaction” Hence a methodology has been developed which can work well in low temperature

55 citations


Network Information
Related Topics (5)
Aquifer
41.4K papers, 778.5K citations
82% related
Groundwater
59.3K papers, 1M citations
79% related
Sedimentary rock
30.3K papers, 746.5K citations
78% related
Porous medium
40.5K papers, 958.9K citations
75% related
Sediment
48.7K papers, 1.2M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20236
202232
202162
202065
201971
201847