scispace - formally typeset
Search or ask a question
Topic

Effective porosity

About: Effective porosity is a research topic. Over the lifetime, 1199 publications have been published within this topic receiving 26511 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Simulations show that the easily soluble minerals in bentonite determine the porewater chemistry, and changes of the effective porosity caused by bentonite swelling can be very large.

54 citations

Journal ArticleDOI
TL;DR: It was found that shallow water in the weathered part of the aquifer may screen MRS signals from deeper water-saturated layers, thus further reducing the possibility of investigating deeper fractured aquifers.
Abstract: The performance of the Magnetic Resonance Sounding (MRS) method applied to the investigation of heterogeneous hard-rock aquifers was studied. It was shown using both numerical modeling and field measurements that MRS could be applied to the investigation of the weathered part of hard-rock aquifers when the product of the free water content multiplied by the thickness of the aquifer is >0.2 (for example, 10-m-thick layer with a 2% water content). Using a currently available one-dimensional MRS system, the method allows the characterization of two-dimensional subsurface structures with acceptable accuracy when the size of the subsurface anomaly is equal to or greater than the MRS loop. However, the fractured part of hard-rock aquifers characterized by low effective porosity (<0.5%) cannot be resolved using currently available MRS equipment. It was found that shallow water in the weathered part of the aquifer may screen MRS signals from deeper water-saturated layers, thus further reducing the possibility of investigating deeper fractured aquifers. A field study using the NUMISplus MRS system developed by IRIS Instruments was carried out on an experimental watershed in southern India. A heterogeneous unconfined aquifer in a gneissic formation was successfully localized, and MRS results were confirmed by drilling shortly after the geophysical study. The top of the aquifer revealed by MRS was found to be in a good agreement with observed static water level measurements in boreholes.

54 citations

Journal ArticleDOI
TL;DR: In this paper, the authors use a new method based on analysis of stabile oxygen and hydrogen isotope distributions in surface water in order to find water flow pathways in a treatment system established on a natural peatland in Ruka, Finland.

54 citations

Journal ArticleDOI
TL;DR: In this paper, a case study from the Upper Permian Zechstein 2 carbonate reservoirs of the Lower Saxony Basin in northwest Germany is presented, where the authors combine petrography, stable isotope, and rare earth and yttrium (REY) analyses of fracture cements with Raman spectroscopy and δ13C analyses of fluid inclusions.
Abstract: The role of deep-burial dissolution in the creation of porosity in carbonates has been discussed controversially in the recent past. We present a case study from the Upper Permian Zechstein 2 carbonate reservoirs of the Lower Saxony Basin in northwest Germany. These reservoirs are locally characterized by high amounts of carbon dioxide (CO2) and variable amounts of hydrogen sulfide (H2S), which are derived from thermochemical sulfate reduction (TSR) and inorganic sources. To study the contribution of these effects on porosity development, we combine petrography, stable isotope, and rare earth and yttrium (REY) analyses of fracture cements with Raman spectroscopy and δ13C analyses of fluid inclusions. It is shown that fluid migration along deep fault zones created and redistributed porosity. Fluid inclusion analyses of vein cements demonstrate that hydrothermal fluids transported inorganic CO2 into the reservoir, where it mixed with minor amounts of TSR-derived organic CO2. The likely source of inorganic CO2 is the thermal decomposition of deeply buried Devonian carbonates. The REY distribution patterns support a hydrothermal origin of ascending iron- and CO2-rich fluids causing dolomitization of calcite and increasing porosity by 10%–16% along fractures. This porosity increase results from hydrothermal dolomitization and dissolution by acids generated from the reaction of Fe2+ with H2S to precipitate pyrite. In contrast, hydrothermal dolomite cements reduced early diagenetic porosity in dolomitic intervals by approximately 17%. However, the carbonate dissolution in the predominantly calcitic host rock results in a net increase in porosity and permeability in the vicinity of the fracture walls, which has to be considered for modeling reservoir properties and fluid migration pathways.

53 citations

Journal ArticleDOI
TL;DR: In this article, the authors suggest that porosity at the surface for a given lithology should be constrained by its critical porosity, i.e. the porosity limit above which a particular sediment exists only as a suspension.
Abstract: Estimates of depth, overpressure and amount of exhumation based on sonic data for a sedimentary formation rely on identification of a normal velocity–depth trend for the formation. Such trends describe how sonic velocity increases with depth in relatively homogeneous, brine-saturated sedimentary formations as porosity is reduced during normal compaction (mechanical and chemical). Compaction is ‘normal’ when the fluid pressure is hydrostatic and the thickness of the overburden has not been reduced by exhumation. We suggest that normal porosity at the surface for a given lithology should be constrained by its critical porosity, i.e. the porosity limit above which a particular sediment exists only as a suspension. Consequently, normal velocity at the surface of unconsolidated sediments saturated with brine approaches the velocity of the sediment in suspension. Furthermore, porosity must approach zero at infinite depth, so the velocity approaches the matrix velocity of the rock and the velocity–depth gradient approaches zero. For sediments with initially good grain contact (when porosity is just below the critical porosity), the velocity gradient decreases with depth. By contrast, initially compliant sediments may have a maximum velocity gradient at some depth if we assume that porosity decreases exponentially with depth. We have used published velocity–porosity–depth relationships to formulate normal velocity–depth trends for consolidated sandstone with varying clay content and for marine shale dominated by smectite/illite. The first relationship is based on a modified Voigt trend (porosity scaled by critical porosity) and the second is based on a modified time-average equation. Baselines for sandstone and shale in the North Sea agree with the established constraints and the shale trend can be applied to predict overpressure. A normal velocity–depth trend for a formation cannot be expressed from an arbitrary choice of mathematical functions and regression parameters, but should be considered as a physical model linked to the velocity–porosity transforms developed in rock physics.

53 citations


Network Information
Related Topics (5)
Aquifer
41.4K papers, 778.5K citations
82% related
Groundwater
59.3K papers, 1M citations
79% related
Sedimentary rock
30.3K papers, 746.5K citations
78% related
Porous medium
40.5K papers, 958.9K citations
75% related
Sediment
48.7K papers, 1.2M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20236
202232
202162
202065
201971
201847