scispace - formally typeset
Search or ask a question

Showing papers on "Efficient energy use published in 2017"


Journal ArticleDOI
TL;DR: Research in materials science is contributing to progress towards a sustainable future based on clean energy generation, transmission and distribution, the storage of electrical and chemical energy, energy efficiency, and better energy management systems.
Abstract: Civilization continues to be transformed by our ability to harness energy beyond human and animal power. A series of industrial and agricultural revolutions have allowed an increasing fraction of the world population to heat and light their homes, fertilize and irrigate their crops, connect to one another and travel around the world. All of this progress is fuelled by our ability to find, extract and use energy with ever increasing dexterity. Research in materials science is contributing to progress towards a sustainable future based on clean energy generation, transmission and distribution, the storage of electrical and chemical energy, energy efficiency, and better energy management systems.

2,894 citations


Journal ArticleDOI
TL;DR: Eyeriss as mentioned in this paper is an accelerator for state-of-the-art deep convolutional neural networks (CNNs) that optimizes for the energy efficiency of the entire system, including the accelerator chip and off-chip DRAM, by reconfiguring the architecture.
Abstract: Eyeriss is an accelerator for state-of-the-art deep convolutional neural networks (CNNs). It optimizes for the energy efficiency of the entire system, including the accelerator chip and off-chip DRAM, for various CNN shapes by reconfiguring the architecture. CNNs are widely used in modern AI systems but also bring challenges on throughput and energy efficiency to the underlying hardware. This is because its computation requires a large amount of data, creating significant data movement from on-chip and off-chip that is more energy-consuming than computation. Minimizing data movement energy cost for any CNN shape, therefore, is the key to high throughput and energy efficiency. Eyeriss achieves these goals by using a proposed processing dataflow, called row stationary (RS), on a spatial architecture with 168 processing elements. RS dataflow reconfigures the computation mapping of a given shape, which optimizes energy efficiency by maximally reusing data locally to reduce expensive data movement, such as DRAM accesses. Compression and data gating are also applied to further improve energy efficiency. Eyeriss processes the convolutional layers at 35 frames/s and 0.0029 DRAM access/multiply and accumulation (MAC) for AlexNet at 278 mW (batch size $N = 4$ ), and 0.7 frames/s and 0.0035 DRAM access/MAC for VGG-16 at 236 mW ( $N = 3$ ).

2,165 citations


Journal ArticleDOI
TL;DR: In this article, a new design paradigm that jointly considers both the communication throughput and the UAV's energy consumption was proposed to maximize the energy efficiency of UAV communications with a ground terminal.
Abstract: Wireless communication with unmanned aerial vehicles (UAVs) is a promising technology for future communication systems. In this paper, assuming that the UAV flies horizontally with a fixed altitude, we study energy-efficient UAV communication with a ground terminal via optimizing the UAV’s trajectory, a new design paradigm that jointly considers both the communication throughput and the UAV’s energy consumption. To this end, we first derive a theoretical model on the propulsion energy consumption of fixed-wing UAVs as a function of the UAV’s flying speed, direction, and acceleration. Based on the derived model and by ignoring the radiation and signal processing energy consumption, the energy efficiency of UAV communication is defined as the total information bits communicated normalized by the UAV propulsion energy consumed for a finite time horizon. For the case of unconstrained trajectory optimization, we show that both the rate-maximization and energy-minimization designs lead to vanishing energy efficiency and thus are energy-inefficient in general. Next, we introduce a simple circular UAV trajectory, under which the UAV’s flight radius and speed are jointly optimized to maximize the energy efficiency. Furthermore, an efficient design is proposed for maximizing the UAV’s energy efficiency with general constraints on the trajectory, including its initial/final locations and velocities, as well as minimum/maximum speed and acceleration. Numerical results show that the proposed designs achieve significantly higher energy efficiency for UAV communication as compared with other benchmark schemes.

1,653 citations


Proceedings ArticleDOI
04 Apr 2017
TL;DR: Neurosurgeon, a lightweight scheduler to automatically partition DNN computation between mobile devices and datacenters at the granularity of neural network layers is designed, finding that a fine-grained, layer-level computation partitioning strategy based on the data and computation variations of each layer within a DNN has significant latency and energy advantages over the status quo approach.
Abstract: The computation for today's intelligent personal assistants such as Apple Siri, Google Now, and Microsoft Cortana, is performed in the cloud. This cloud-only approach requires significant amounts of data to be sent to the cloud over the wireless network and puts significant computational pressure on the datacenter. However, as the computational resources in mobile devices become more powerful and energy efficient, questions arise as to whether this cloud-only processing is desirable moving forward, and what are the implications of pushing some or all of this compute to the mobile devices on the edge.In this paper, we examine the status quo approach of cloud-only processing and investigate computation partitioning strategies that effectively leverage both the cycles in the cloud and on the mobile device to achieve low latency, low energy consumption, and high datacenter throughput for this class of intelligent applications. Our study uses 8 intelligent applications spanning computer vision, speech, and natural language domains, all employing state-of-the-art Deep Neural Networks (DNNs) as the core machine learning technique. We find that given the characteristics of DNN algorithms, a fine-grained, layer-level computation partitioning strategy based on the data and computation variations of each layer within a DNN has significant latency and energy advantages over the status quo approach.Using this insight, we design Neurosurgeon, a lightweight scheduler to automatically partition DNN computation between mobile devices and datacenters at the granularity of neural network layers. Neurosurgeon does not require per-application profiling. It adapts to various DNN architectures, hardware platforms, wireless networks, and server load levels, intelligently partitioning computation for best latency or best mobile energy. We evaluate Neurosurgeon on a state-of-the-art mobile development platform and show that it improves end-to-end latency by 3.1X on average and up to 40.7X, reduces mobile energy consumption by 59.5% on average and up to 94.7%, and improves datacenter throughput by 1.5X on average and up to 6.7X.

899 citations


Journal ArticleDOI
15 Oct 2017-Energy
TL;DR: The Smart Energy System concept represents a scientific shift in paradigms away from single-sector thinking to a coherent energy systems understanding on how to benefit from the integration of all sectors and infrastructures.

653 citations


Journal ArticleDOI
Abstract: This paper presents a state-of-the-art review on a hot topic in the literature, i.e., vibration based energy harvesting techniques, including theory, modelling methods and the realizations of the piezoelectric, electromagnetic and electrostatic approaches. To minimize the requirement of external power source and maintenance for electric devices such as wireless sensor networks, the energy harvesting technique based on vibrations has been a dynamic field of studying interest over past years. One important limitation of existing energy harvesting techniques is that the power output performance is seriously subject to the resonant frequencies of ambient vibrations, which are often random and broadband. To solve this problem, researchers have concentrated on developing efficient energy harvesters by adopting new materials and optimising the harvesting devices. Particularly, among these approaches, different types of energy harvesters have been designed with consideration of nonlinear characteristics so that the frequency bandwidth for effective energy harvesting of energy harvesters can be broadened. This paper reviews three main and important vibration-to-electricity conversion mechanisms, their design theory or methods and potential applications in the literature. As one of important factors to estimate the power output performance, the energy conversion efficiency of different conversion mechanisms is also summarised. Finally, the challenging issues based on the existing methods and future requirement of energy harvesting are discussed.

628 citations


Journal ArticleDOI
TL;DR: The various combinations of the hybrid model are found to be the most effective in time series energy forecasting for building and the nine most popular forecasting techniques based on the machine learning platform are analyzed.
Abstract: Energy consumption forecasting for buildings has immense value in energy efficiency and sustainability research. Accurate energy forecasting models have numerous implications in planning and energy optimization of buildings and campuses. For new buildings, where past recorded data is unavailable, computer simulation methods are used for energy analysis and forecasting future scenarios. However, for existing buildings with historically recorded time series energy data, statistical and machine learning techniques have proved to be more accurate and quick. This study presents a comprehensive review of the existing machine learning techniques for forecasting time series energy consumption. Although the emphasis is given to a single time series data analysis, the review is not just limited to it since energy data is often co-analyzed with other time series variables like outdoor weather and indoor environmental conditions. The nine most popular forecasting techniques that are based on the machine learning platform are analyzed. An in-depth review and analysis of the ‘hybrid model’, that combines two or more forecasting techniques is also presented. The various combinations of the hybrid model are found to be the most effective in time series energy forecasting for building.

611 citations


Journal ArticleDOI
TL;DR: In this article, the authors compared the performance of feed-forward back-propagation artificial neural network (ANN) with random forest (RF), an ensemble-based method gaining popularity in prediction, for predicting the hourly HVAC energy consumption of a hotel in Madrid, Spain.

600 citations


Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of the latest research on both green 5G techniques and energy harvesting for communication, and some technical challenges and potential research topics for realizing sustainable green wireless networks are also identified.
Abstract: The stringent requirements of a 1000x increase in data traffic and 1 ms round-trip latency have made limiting the potentially tremendous ensuing energy consumption one of the most challenging problems for the design of the upcoming 5G networks. To enable sustainable 5G networks, new technologies have been proposed to improve the system energy efficiency, and alternative energy sources are introduced to reduce our dependence on traditional fossil fuels. In particular, various 5G techniques target the reduction of the energy consumption without sacrificing the quality of service. Meanwhile, energy harvesting technologies, which enable communication transceivers to harvest energy from various renewable resources and ambient radio frequency signals for communication, have drawn significant interest from both academia and industry. In this article, we provide an overview of the latest research on both green 5G techniques and energy harvesting for communication. In addition, some technical challenges and potential research topics for realizing sustainable green 5G networks are also identified.

535 citations


Journal ArticleDOI
TL;DR: The state-of-the-art dc microgrid technology that covers ac interfaces, architectures, possible grounding schemes, power quality issues, and communication systems is presented.
Abstract: To meet the fast-growing energy demand and, at the same time, tackle environmental concerns resulting from conventional energy sources, renewable energy sources are getting integrated in power networks to ensure reliable and affordable energy for the public and industrial sectors However, the integration of renewable energy in the ageing electrical grids can result in new risks/challenges, such as security of supply, base load energy capacity, seasonal effects, and so on Recent research and development in microgrids have proved that microgrids, which are fueled by renewable energy sources and managed by smart grids (use of smart sensors and smart energy management system), can offer higher reliability and more efficient energy systems in a cost-effective manner Further improvement in the reliability and efficiency of electrical grids can be achieved by utilizing dc distribution in microgrid systems DC microgrid is an attractive technology in the modern electrical grid system because of its natural interface with renewable energy sources, electric loads, and energy storage systems In the recent past, an increase in research work has been observed in the area of dc microgrid, which brings this technology closer to practical implementation This paper presents the state-of-the-art dc microgrid technology that covers ac interfaces, architectures, possible grounding schemes, power quality issues, and communication systems The advantages of dc grids can be harvested in many applications to improve their reliability and efficiency This paper also discusses benefits and challenges of using dc grid systems in several applications This paper highlights the urgent need of standardizations for dc microgrid technology and presents recent updates in this area

505 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a state-of-the-art review on energy, water and environment interconnection and future energy efficient desalination possibilities to save energy and protect environment.

Journal ArticleDOI
TL;DR: The proposed solutions for collecting and managing sensors’ data in a smart building could lead us in an energy efficient smart building, and thus in a Green Smart Building.

Proceedings ArticleDOI
21 Jul 2017
TL;DR: Zhang et al. as discussed by the authors proposed an energy-aware pruning algorithm for CNNs, which directly uses the energy consumption of a CNN to guide the pruning process, and the energy estimation methodology uses parameters extrapolated from actual hardware measurements.
Abstract: Deep convolutional neural networks (CNNs) are indispensable to state-of-the-art computer vision algorithms. However, they are still rarely deployed on battery-powered mobile devices, such as smartphones and wearable gadgets, where vision algorithms can enable many revolutionary real-world applications. The key limiting factor is the high energy consumption of CNN processing due to its high computational complexity. While there are many previous efforts that try to reduce the CNN model size or the amount of computation, we find that they do not necessarily result in lower energy consumption. Therefore, these targets do not serve as a good metric for energy cost estimation. To close the gap between CNN design and energy consumption optimization, we propose an energy-aware pruning algorithm for CNNs that directly uses the energy consumption of a CNN to guide the pruning process. The energy estimation methodology uses parameters extrapolated from actual hardware measurements. The proposed layer-by-layer pruning algorithm also prunes more aggressively than previously proposed pruning methods by minimizing the error in the output feature maps instead of the filter weights. For each layer, the weights are first pruned and then locally fine-tuned with a closed-form least-square solution to quickly restore the accuracy. After all layers are pruned, the entire network is globally fine-tuned using back-propagation. With the proposed pruning method, the energy consumption of AlexNet and GoogLeNet is reduced by 3.7x and 1.6x, respectively, with less than 1% top-5 accuracy loss. We also show that reducing the number of target classes in AlexNet greatly decreases the number of weights, but has a limited impact on energy consumption.

Posted Content
TL;DR: In this paper, the authors jointly optimize the wake-up schedule and UAV's trajectory to minimize the maximum energy consumption of all ground sensor nodes, while ensuring that the required amount of data is collected reliably from each SN.
Abstract: In wireless sensor networks (WSNs), utilizing the unmanned aerial vehicle (UAV) as a mobile data collector for the ground sensor nodes (SNs) is an energy-efficient technique to prolong the network lifetime. Specifically, since the UAV can sequentially move close to each of the SNs when collecting data from them and thus reduce the link distance for saving the SNs' transmission energy. In this letter, considering a general fading channel model for the SN-UAV links, we jointly optimize the SNs' wake-up schedule and UAV's trajectory to minimize the maximum energy consumption of all SNs, while ensuring that the required amount of data is collected reliably from each SN. We formulate our design as a mixed-integer non-convex optimization problem. By applying the successive convex optimization technique, an efficient iterative algorithm is proposed to find a sub-optimal solution. Numerical results show that the proposed scheme achieves significant network energy saving as compared to benchmark schemes.

Journal ArticleDOI
TL;DR: The principle of thermal insulation is by the proper installation of insulation using energy-efficient materials that would reduce the heat loss or heat gain, which leads to reduction of energy cost as the result as mentioned in this paper.
Abstract: In residential sector, air conditioning system takes the biggest portion of overall energy consumption to fulfil the thermal comfort need. In addressing the issue, thermal insulation is one efficient technology to utilize the energy in providing the desired thermal comfort by its environmentally friendly characteristics. The principle of thermal insulation is by the proper installation of insulation using energy-efficient materials that would reduce the heat loss or heat gain, which leads to reduction of energy cost as the result. This paper is aimed to gather most recent developments on the building thermal insulations and also to discuss about the life-cycle analysis and potential emissions reduction by using proper insulation materials.

Journal ArticleDOI
TL;DR: A unifying framework for energy-efficient optimization and scheduling of IoT-based smart cities and the energy harvesting in smart cities is provided, which is a promising solution for extending the lifetime of low-power devices and its related challenges.
Abstract: The drastic increase in urbanization over the past few years requires sustainable, efficient, and smart solutions for transportation, governance, environment, quality of life, and so on. The Internet of Things offers many sophisticated and ubiquitous applications for smart cities. The energy demand of IoT applications is increased, while IoT devices continue to grow in both numbers and requirements. Therefore, smart city solutions must have the ability to efficiently utilize energy and handle the associated challenges. Energy management is considered as a key paradigm for the realization of complex energy systems in smart cities. In this article, we present a brief overview of energy management and challenges in smart cities. We then provide a unifying framework for energy-efficient optimization and scheduling of IoT-based smart cities. We also discuss the energy harvesting in smart cities, which is a promising solution for extending the lifetime of low-power devices and its related challenges. We detail two case studies. The first one targets energy-efficient scheduling in smart homes, and the second covers wireless power transfer for IoT devices in smart cities. Simulation results for the case studies demonstrate the tremendous impact of energy- efficient scheduling optimization and wireless power transfer on the performance of IoT in smart cities.

Journal ArticleDOI
TL;DR: An iterative gradient user association and power allocation algorithm is proposed and shown to converge rapidly to an optimal point.
Abstract: Millimeter wave (mmWave) communication technologies have recently emerged as an attractive solution to meet the exponentially increasing demand on mobile data traffic. Moreover, ultra dense networks (UDNs) combined with mmWave technology are expected to increase both energy efficiency and spectral efficiency. In this paper, user association and power allocation in mmWave-based UDNs is considered with attention to load balance constraints, energy harvesting by base stations, user quality of service requirements, energy efficiency, and cross-tier interference limits. The joint user association and power optimization problem are modeled as a mixed-integer programming problem, which is then transformed into a convex optimization problem by relaxing the user association indicator and solved by Lagrangian dual decomposition. An iterative gradient user association and power allocation algorithm is proposed and shown to converge rapidly to an optimal point. The complexity of the proposed algorithm is analyzed and its effectiveness compared with existing methods is verified by simulations.

Journal ArticleDOI
TL;DR: An energy efficient cluster head selection algorithm which is based on particle swarm optimization (PSO) called PSO-ECHS is proposed with an efficient scheme of particle encoding and fitness function and the results are compared with some existing algorithms to demonstrate the superiority of the proposed algorithm.
Abstract: Clustering has been proven to be one of the most efficient techniques for saving energy of wireless sensor networks (WSNs). However, in a hierarchical cluster based WSN, cluster heads (CHs) consume more energy due to extra overload for receiving and aggregating the data from their member sensor nodes and transmitting the aggregated data to the base station. Therefore, the proper selection of CHs plays vital role to conserve the energy of sensor nodes for prolonging the lifetime of WSNs. In this paper, we propose an energy efficient cluster head selection algorithm which is based on particle swarm optimization (PSO) called PSO-ECHS. The algorithm is developed with an efficient scheme of particle encoding and fitness function. For the energy efficiency of the proposed PSO approach, we consider various parameters such as intra-cluster distance, sink distance and residual energy of sensor nodes. We also present cluster formation in which non-cluster head sensor nodes join their CHs based on derived weight function. The algorithm is tested extensively on various scenarios of WSNs, varying number of sensor nodes and the CHs. The results are compared with some existing algorithms to demonstrate the superiority of the proposed algorithm.

Journal ArticleDOI
TL;DR: This paper provides a comprehensive overview on the extensive on-going research efforts and categorize them based on the fundamental green tradeoffs and focuses on research progresses of 4G and 5G communications, such as orthogonal frequency division multiplexing and non-orthogonal aggregation, multiple input multiple output, and heterogeneous networks.
Abstract: With years of tremendous traffic and energy consumption growth, green radio has been valued not only for theoretical research interests but also for the operational expenditure reduction and the sustainable development of wireless communications. Fundamental green tradeoffs, served as an important framework for analysis, include four basic relationships: 1) spectrum efficiency versus energy efficiency; 2) deployment efficiency versus energy efficiency; 3) delay versus power; and 4) bandwidth versus power. In this paper, we first provide a comprehensive overview on the extensive on-going research efforts and categorize them based on the fundamental green tradeoffs. We will then focus on research progresses of 4G and 5G communications, such as orthogonal frequency division multiplexing and non-orthogonal aggregation, multiple input multiple output, and heterogeneous networks. We will also discuss potential challenges and impacts of fundamental green tradeoffs, to shed some light on the energy efficient research and design for future wireless networks.

Journal ArticleDOI
TL;DR: It is shown quantitatively that much better results could be achieved with the highly adaptive RS dataflow, and that DRAM alone does not dictate energy efficiency, and optimizing the energy consumption for only a certain data type does not lead to the best overall system energy efficiency.
Abstract: Eyeriss is a dedicated accelerator for deep neural networks (DNNs). It features a spatial architecture that supports an adaptive dataflow, called Row-Stationary (RS), which optimizes data movement in a multi-level storage hierarchy according to the shape and size of the DNN model. Unlike the previous work that commonly applies one-size-fits-all dataflows regardless of the data structure of the DNN model, we have shown quantitatively that much better results could be achieved with the highly adaptive RS dataflow. This analysis is made possible thanks to our framework that can systematically analyze and evaluate the system energy efficiency of different dataflows working for different shapes and sizes of DNNs. We observe that DRAM alone does not dictate energy efficiency, and optimizing the energy consumption for only a certain data type does not lead to the best overall system energy efficiency. For AlexNet, the RS dataflow is 1.4 to 2.5 times more energy efficient than existing dataflows in the convolutional layers, and at least 1.3 times more energy efficient in the fully-connected layers for batch size of at least 16.

Posted Content
TL;DR: In this article, the joint user association and power optimization problem is modeled as a mixed-integer programming problem, which is then transformed into a convex optimization problem by relaxing the user association indicator and solved by Lagrangian dual decomposition.
Abstract: Millimeter wave (mmWave) communication technologies have recently emerged as an attractive solution to meet the exponentially increasing demand on mobile data traffic. Moreover, ultra dense networks (UDNs) combined with mmWave technology are expected to increase both energy efficiency and spectral efficiency. In this paper, user association and power allocation in mmWave based UDNs is considered with attention to load balance constraints, energy harvesting by base stations, user quality of service requirements, energy efficiency, and cross-tier interference limits. The joint user association and power optimization problem is modeled as a mixed-integer programming problem, which is then transformed into a convex optimization problem by relaxing the user association indicator and solved by Lagrangian dual decomposition. An iterative gradient user association and power allocation algorithm is proposed and shown to converge rapidly to an optimal point. The complexity of the proposed algorithm is analyzed and the effectiveness of the proposed scheme compared with existing methods is verified by simulations.

Journal ArticleDOI
TL;DR: This article explored the impact of improvements in energy research development (ERD) on greenhouse gas (GHG) emissions using environmental Kuznets curve hypothesis for 28 OECD countries over the period of 1990-2014.

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review on the optimal allocation of distributed generators was carried out for different objectives, constraints, and algorithms, highlighting how the methods and algorithms for optimal distributed generation allocation play an important role in improving the accuracy and efficiency of the results.
Abstract: Distributed generation, with respect to its ability in utilizing the alternative resources of energy, provides a promising future for power generation in electric networks. Distributed generators contribution to power systems include improvement in energy efficiency and power quality to reliability and security. These benefits are only achievable with optimal allocation of distributed resources that considers the objective function, constraints, and employs suitable optimization algorithm. In this paper, a comprehensive review on the optimal allocation of distributed generators was carried out for different objectives, constraints, and algorithms. Current review highlights how the methods and algorithms for optimal distributed generation allocation play an important role in improving the accuracy and efficiency of the results.

Journal ArticleDOI
TL;DR: In this paper, a review of the development of thermal energy storage materials for building applications oriented towards zero-energy buildings is presented, with a special focus on their technical characteristics and development stage.

Journal ArticleDOI
TL;DR: This paper gives an extensive literature review on energy-efficient train control (EETC), from the first simple models from the 1960s of a train running on a level track to the advanced models and algorithms of the last decade dealing with varying gradients and speed limits, and including regenerative braking.

Journal ArticleDOI
Xiongfeng Pan1, Bowei Ai1, Changyu Li1, Xianyou Pan1, Yaobo Yan1 
TL;DR: Based on the large scale provincial panel data on in China from 2006 to 2015, the authors uses the directed acyclic graph (DAG) and structure vector autoregrression (SVAR) to study the internal dynamic relationship among the environmental regulation, technological innovation and energy efficiency.

Journal ArticleDOI
TL;DR: This paper investigates energy efficiency improvement for a downlink NOMA single-cell network by considering imperfect CSI, and proposes an iterative algorithm for user scheduling and power allocation to maximize the system energy efficiency.
Abstract: Non-orthogonal multiple access (NOMA) exploits successive interference cancellation technique at the receivers to improve the spectral efficiency. By using this technique, multiple users can be multiplexed on the same subchannel to achieve high sum rate. Most previous research works on NOMA systems assume perfect channel state information (CSI). However, in this paper, we investigate energy efficiency improvement for a downlink NOMA single-cell network by considering imperfect CSI. The energy efficient resource scheduling problem is formulated as a non-convex optimization problem with the constraints of outage probability limit, the maximum power of the system, the minimum user data rate, and the maximum number of multiplexed users sharing the same subchannel. Different from previous works, the maximum number of multiplexed users can be greater than two, and the imperfect CSI is first studied for resource allocation in NOMA. To efficiently solve this problem, the probabilistic mixed problem is first transformed into a non-probabilistic problem. An iterative algorithm for user scheduling and power allocation is proposed to maximize the system energy efficiency. The optimal user scheduling based on exhaustive search serves as a system performance benchmark, but it has high computational complexity. To balance the system performance and the computational complexity, a new suboptimal user scheduling scheme is proposed to schedule users on different subchannels. Based on the user scheduling scheme, the optimal power allocation expression is derived by the Lagrange approach. By transforming the fractional-form problem into an equivalent subtractive-form optimization problem, an iterative power allocation algorithm is proposed to maximize the system energy efficiency. Simulation results demonstrate that the proposed user scheduling algorithm closely attains the optimal performance.

Journal ArticleDOI
22 Sep 2017-Energies
TL;DR: The analysis shows that the average Power Usage Effectiveness (PUE) of the facilities participating in the European Code of Conduct for Data Centre Energy Efficiency programme is declining year after year, confirming that voluntary approaches could be effective in addressing climate and energy issue.
Abstract: Climate change is recognised as one of the key challenges humankind is facing. The Information and Communication Technology (ICT) sector including data centres generates up to 2% of the global CO2 emissions, a number on par to the aviation sector contribution, and data centres are estimated to have the fastest growing carbon footprint from across the whole ICT sector, mainly due to technological advances such as the cloud computing and the rapid growth of the use of Internet services. There are no recent estimations of the total energy consumption of the European data centre and of their energy efficiency. The aim of this paper is to evaluate, analyse and present the current trends in energy consumption and efficiency in data centres in the European Union using the data submitted by companies participating in the European Code of Conduct for Data Centre Energy Efficiency programme, a voluntary initiative created in 2008 in response to the increasing energy consumption in data centres and the need to reduce the related environmental, economic and energy supply security impacts. The analysis shows that the average Power Usage Effectiveness (PUE) of the facilities participating in the programme is declining year after year. This confirms that voluntary approaches could be effective in addressing climate and energy issue.

Journal ArticleDOI
TL;DR: In this article, a meta-heuristic function is proposed with weighting of technical, economic, environmental and socio-political factors to suit the design goals for the energy system.

Journal ArticleDOI
TL;DR: A modified Stable Election Protocol (SEP), named Prolong-SEP (P- SEP) is presented to prolong the stable period of Fog-supported sensor networks by maintaining balanced energy consumption.
Abstract: Energy efficiency is one of the main issues that will drive the design of fog-supported wireless sensor networks (WSNs). Indeed, the behavior of such networks becomes very unstable in node's heterogeneity and/or node's failure. In WSNs, clusters are dynamically built up by neighbor nodes, to save energy and prolong the network lifetime. One of the nodes plays the role of Cluster Head (CH) that is responsible for transferring data among the neighboring sensors. Due to pervasive use of WSNs, finding an energy-efficient policy to opt CHs in the WSNs has become increasingly important. Due to this motivations, in this paper, a modified Stable Election Protocol (SEP), named Prolong-SEP (P-SEP) is presented to prolong the stable period of Fog-supported sensor networks by maintaining balanced energy consumption. P-SEP enables uniform nodes distribution, new CH selecting policy, and prolong the time interval of the system, especially before the failure of the first node. P-SEP considers two-level nodes' heterogeneities: advanced and normal nodes. In P-SEP, the advanced and normal nodes have the opportunity to become CHs. The performance of the proposed approach is evaluated by varying the various parameters of the network in comparison with other state-of-the-art cluster-based routing protocols. The simulation results point out that, by varying the initial energy and node heterogeneity parameters, the network lifetime of P-SEP improved by 31, 29, 20 and 40 % in comparison with SEP, Low-Energy Adaptive Clustering Hierarchy with Deterministic Cluster-Head Selection (LEACH-DCHS), Modified SEP (M-SEP) and an efficient modified SEP (EM-SEP), respectively.