scispace - formally typeset
Search or ask a question
Topic

Efficient energy use

About: Efficient energy use is a research topic. Over the lifetime, 73099 publications have been published within this topic receiving 1194716 citations. The topic is also known as: energy efficiency.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors developed energy-efficient designs for both the transmit power allocation and the phase shifts of the surface reflecting elements subject to individual link budget guarantees for the mobile users.
Abstract: The adoption of a reconfigurable intelligent surface (RIS) for downlink multi-user communication from a multi-antenna base station is investigated in this paper. We develop energy-efficient designs for both the transmit power allocation and the phase shifts of the surface reflecting elements subject to individual link budget guarantees for the mobile users. This leads to non-convex design optimization problems for which to tackle we propose two computationally affordable approaches, capitalizing on alternating maximization, gradient descent search, and sequential fractional programming. Specifically, one algorithm employs gradient descent for obtaining the RIS phase coefficients, and fractional programming for optimal transmit power allocation. Instead, the second algorithm employs sequential fractional programming for the optimization of the RIS phase shifts. In addition, a realistic power consumption model for RIS-based systems is presented, and the performance of the proposed methods is analyzed in a realistic outdoor environment. In particular, our results show that the proposed RIS-based resource allocation methods are able to provide up to 300% higher energy efficiency in comparison with the use of regular multi-antenna amplify-and-forward relaying.

1,967 citations

Proceedings ArticleDOI
09 Jul 2003
TL;DR: This paper proposes a distributed, randomized clustering algorithm to organize the sensors in a wireless sensor network into clusters, and extends this algorithm to generate a hierarchy of clusterheads and observes that the energy savings increase with the number of levels in the hierarchy.
Abstract: A wireless network consisting of a large number of small sensors with low-power transceivers can be an effective tool for gathering data in a variety of environments. The data collected by each sensor is communicated through the network to a single processing center that uses all reported data to determine characteristics of the environment or detect an event. The communication or message passing process must be designed to conserve the limited energy resources of the sensors. Clustering sensors into groups, so that sensors communicate information only to clusterheads and then the clusterheads communicate the aggregated information to the processing center, may save energy. In this paper, we propose a distributed, randomized clustering algorithm to organize the sensors in a wireless sensor network into clusters. We then extend this algorithm to generate a hierarchy of clusterheads and observe that the energy savings increase with the number of levels in the hierarchy. Results in stochastic geometry are used to derive solutions for the values of parameters of our algorithm that minimize the total energy spent in the network when all sensors report data through the clusterheads to the processing center.

1,935 citations

Journal ArticleDOI
TL;DR: In this paper, a review of some of the relevant literature from the US offers definitions and identifies sources including direct, secondary, and economy-wide sources and concludes that the range of estimates for the size of the rebound effect is very low to moderate.

1,867 citations

Proceedings ArticleDOI
16 Jul 2001
TL;DR: A randomized algorithm where coordinators rotate with time is given, demonstrating how localized node decisions lead to a connected, capacity-preserving global topology.
Abstract: This paper presents Span, a power saving technique for multi-hop ad hoc wireless networks that reduces energy consumption without significantly diminishing the capacity or connectivity of the network. Span builds on the observation that when a region of a shared-channel wireless network bag a sufficient density of nodes, only a small number of them need be on at any time to forward traffic for active connections.Span is a distributed, randomized algorithm where nodes make local decisions on whether to sleep, or to join a forwarding backbone as a coordinator. Each node bases its decision on an estimate of how many of its neighbors will benefit from it being awake, and the amount of energy available to it. We give a randomized algorithm where coordinators rotate with time, demonstrating how localized node decisions lead to a connected, capacity-preserving global topology.Improvement in system lifetime due to Span increases as the ratio of idle-to-sleep energy consumption increases, and increases as the density of the network increases. For example, our simulations show that with a practical energy model, system lifetime of an 802.11 network in power saving mode with Span is a factor of two better than without. Span integrates nicely with 802.11—when run in conjunction with the 802.11 power saving mode, Span improves communication latency, capacity, and system lifetime.

1,854 citations

Journal ArticleDOI
TL;DR: In this paper, the main characteristics of different electricity storage techniques and their field of application (permanent or portable, long- or short-term storage, maximum power required, etc.).
Abstract: Electricity generated from renewable sources, which has shown remarkable growth worldwide, can rarely provide immediate response to demand as these sources do not deliver a regular supply easily adjustable to consumption needs. Thus, the growth of this decentralized production means greater network load stability problems and requires energy storage, generally using lead batteries, as a potential solution. However, lead batteries cannot withstand high cycling rates, nor can they store large amounts of energy in a small volume. That is why other types of storage technologies are being developed and implemented. This has led to the emergence of storage as a crucial element in the management of energy from renewable sources, allowing energy to be released into the grid during peak hours when it is more valuable. The work described in this paper highlights the need to store energy in order to strengthen power networks and maintain load levels. There are various types of storage methods, some of which are already in use, while others are still in development. We have taken a look at the main characteristics of the different electricity storage techniques and their field of application (permanent or portable, long- or short-term storage, maximum power required, etc.). These characteristics will serve to make comparisons in order to determine the most appropriate technique for each type of application.

1,822 citations


Network Information
Related Topics (5)
Wireless sensor network
142K papers, 2.4M citations
83% related
Wireless
133.4K papers, 1.9M citations
81% related
Optimization problem
96.4K papers, 2.1M citations
81% related
Network packet
159.7K papers, 2.2M citations
81% related
Wireless network
122.5K papers, 2.1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,734
20223,551
20214,812
20205,344
20195,861
20185,795